Заказать курсовые, контрольные, рефераты...
Образовательные работы на заказ. Недорого!

Алгоритм решения ЗЛП симплексным методом

РефератПомощь в написанииУзнать стоимостьмоей работы

Если Вы дошли до пятого шага, значит нашли решение, которое допустимо. Однако, это не значит, что оно оптимально. Оптимальным оно будет только в том случае, если положительны все элементы в F-строке. Если же это не так, то необходимо улучшить решение, для чего находим для следующего перерасчета ведущие строку и столбец по следующему алгоритму. Первоначально, находим минимальное отрицательное… Читать ещё >

Алгоритм решения ЗЛП симплексным методом (реферат, курсовая, диплом, контрольная)

Симплекс-метод подразумевает последовательный перебор всех вершин области допустимых значений с целью нахождения той вершины, где функция принимает экстремальное значение. На первом этапе находится какое-нибудь решение, которое улучшается на каждом последующем шаге. Такое решение называется базисным.

Рассмотрим шаги симлекс-метода.

  • 1) в составленной таблице сначала необходимо просмотреть столбец со свободными членами. Если в нем имеются отрицательные элементы, то необходимо осуществить переход ко второму шагу, если же нет, то к пятому;
  • 2) на втором шаге необходимо определиться, какую переменную исключить из базиса, а какую включить, для того, что бы произвести перерасчет симплекс-таблицы. Для этого просматриваем столбец со свободными членами и находим в нем отрицательный элемент. Строка с отрицательным элементом будет называться ведущей. В ней находим максимальный по модулю отрицательный элемент, соответствующий ему столбец — ведомый. Если же среди свободных членов есть отрицательные значения, а в соответствующей строке нет, то такая таблица не будет иметь решений. Переменная в ведущей строке, находящаяся в столбце свободных членов исключается из базиса, а переменная, соответствующая ведущему столбцу включается в базис. В таблице 1 приведен пример симплекс-таблицы.

Таблица 1 — Пример симплекс-таблицы

Базисные переменные.

Свободные члены в ограничениях.

Небазисные переменные.

x1

x2

xl

xn

xn+1

b1

a11

a12

a1l

a1n

xn+2

b2

a21

a22

a2l

a2n

xn+r

b2.

ar1

ar2

arl

arn

xn+m

bm

am1

am2

aml

amn

F (x)max

F0

— c1

— c2

— c1

— cn

  • 3) на третьем шаге пересчитываем всю симплекс-таблицу по специальным формулам;
  • 4) если после перерасчета в столбце свободных членов остались отрицательные элементы, то переходим к первому шагу, если таких нет, то к пятому;
  • 5) если Вы дошли до пятого шага, значит нашли решение, которое допустимо. Однако, это не значит, что оно оптимально. Оптимальным оно будет только в том случае, если положительны все элементы в F-строке. Если же это не так, то необходимо улучшить решение, для чего находим для следующего перерасчета ведущие строку и столбец по следующему алгоритму. Первоначально, находим минимальное отрицательное число в строке F, исключая значение функции. Столбец с этим числом и будем ведущим. Для того, что бы найти ведущую строку, находим отношение соответствующего свободного члена и элемента из ведущего столбца, при условии, что они положительны. Минимальное отношение позволит определить ведущую строку. Вновь пересчитываем таблицу по формулам, т. е. переходим к шагу 3;
  • 6) если невозможно найти ведущую строку, так как нет положительных элементов в ведущем столбце, то функция в области допустимых решений задачи не ограничена сверху и Fmax->?. Если в строке F и в столбце свободных членов все элементы положительные, то найдено оптимальное решение.
Показать весь текст
Заполнить форму текущей работой