ΠΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΈ ΡΡΡΡΠΊΡΡΡΠ° Π½ΠΈΠ·ΠΊΠΎΠ»Π΅ΠΆΠ°ΡΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π² Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΡΡ ΡΠ΄ΡΠ°Ρ
ΠΡΠΎΠ±Π»Π΅ΠΌΠ° Π½Π΅ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΡΠΈΡΠ»Π° ΡΠ°ΡΡΠΈΡ Π² ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΠΠ¨ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΠΈΠΏΠΊΠΈΠ½Π°-ΠΠΎΠ³Π°ΠΌΠΈ Π² ΡΠ°ΠΌΠΊΠ°Ρ Π ΠΠ‘Π€. ΠΠΎΠΌΠΈΠΌΠΎ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ Π½Π΅ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΈΡΠ»Π° ΡΠ°ΡΡΠΈΡ, Π΄ΠΎΡΡΠΎΠΈΠ½ΡΡΠ²ΠΎΠΌ ΡΡΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π΄Π»Ρ ΡΠΈΠ» ΡΠΏΠ°ΡΠΈΠ²Π°-ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ, Π½ΠΈΠΆΠ΅ ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ²Π΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠΈΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π΄Π»Ρ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΠ½ΠΎΡΡΠΈ I
- Π‘ΠΏΠΈΡΠΎΠΊ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΠΉ IV
- Π‘ΠΏΠΈΡΠΎΠΊ ΡΠ°Π±Π»ΠΈΡ VI
- Π‘ΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ VII ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ¨
- 1. ΠΡΠ½ΠΎΠ²Ρ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎ-ΡΠΎΠ½ΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ
- 1. 1. Π€ΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΌ
- 1. 2. Π§Π΅ΡΠ½ΠΎ-ΡΠ΅ΡΠ½ΡΠ΅ ΡΠ΄ΡΠ°
- 1. 3. ΠΠ΅ΡΠ΅ΡΠ½ΡΠ΅ ΡΠ΄ΡΠ°.'
- 1. 3. 1. ΠΠ»ΠΎΠΊΠΈΡΠΎΠ²ΠΊΠ° ΡΡΠ΅Ρ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ
- 1. 4. ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Ρ
- 2. ΠΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ
- 2. 1. Π Π°ΡΡΠΈΡΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΡ ΡΠ°Π·
- 2. 2. ΠΠ΅ΡΠΎΠ΄ ΠΠΈΠΏΠΊΠΈΠ½Π°-ΠΠΎΠ³Π°ΠΌΠΈ
- 2. 3. ΠΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Π² Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΡΠ΄ΡΠ°Ρ
- 2. 4. ΠΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Π² Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΡΠ΄ΡΠ°Ρ Π² ΡΠ°ΠΌΠΊΠ°Ρ Π ΠΠ‘Π€
- 3. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ
- 3. 1. Π§Π΅ΡΠ½ΠΎ-ΡΠ΅ΡΠ½ΡΠ΅ ΡΠ΄ΡΠ°
- 3. 2. ΠΠ΅ΡΠ΅ΡΠ½ΡΠ΅ ΡΠ΄ΡΠ°. Π£ΡΠ΅Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΠΠΠ‘Π€
- 3. 3. ΠΠ΅ΡΠ΅ΡΠ½ΡΠ΅ ΡΠ΄ΡΠ°. Π£ΡΠ΅Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ Π² ΡΠ°ΠΌΠΊΠ°Ρ Π ΠΠ‘Π€
- ΠΠ°Π½Π»ΡΡΠ΅Π½ΠΈΠ΅
- Π Π‘ΠΏΠ°ΡΠΈΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΈΠ°Π½ ΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡ ΡΠΈΡΠ»Π° ΡΠ°ΡΡΠΈΡ Π² Π½Π²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΈ
- Π ΠΠ°ΡΡΠΈΡΠ½ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΈΠ°Π½Π° ΠΠ€Π Π² Π ΠΠ‘Π€
ΠΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΈ ΡΡΡΡΠΊΡΡΡΠ° Π½ΠΈΠ·ΠΊΠΎΠ»Π΅ΠΆΠ°ΡΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π² Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΡΡ ΡΠ΄ΡΠ°Ρ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅
.
ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΡΠ΅Π»ΡΡ Π΄ΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΏΠΎΠ΄Ρ ΠΎΠ΄Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ΅Π³ΠΎ ΠΈΠ·ΡΡΠ°ΡΡ ΡΡΡΠ΅ΠΊΡΡ, ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΠΌΡΠ΅ Π½ΡΠΊΠ»ΠΎΠ½Π½ΡΠΌΠΈ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡΠΌΠΈ, ΠΈ ΠΈΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΡΠ²ΠΎΠΉΡΡΠ²Π° Π½ΠΈΠ·ΠΊΠΎ Π»Π΅ΠΆΠ°ΡΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π² Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΡΡ ΡΠ΄ΡΠ°Ρ . ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π±ΡΠ»ΠΈ ΡΠ΄Π΅Π»Π°Π½Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΡ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎ-ΡΠΎΠ½ΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ [54]:
β’ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΡΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΡΠΈΠΏΠ° ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΡΡ ΡΠΎΠ½ΠΎΠ½ Π΄Π°Π²Π°Π»ΠΈ Π²ΠΊΠ»Π°Π΄ Π² Π²ΠΎΠ»Π½ΠΎΠ²ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΡΠ΅ΡΠ½ΠΎ-ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΡΠΎΠ²Π°.
β’ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΡ ΡΠ°Π· Π΄Π»Ρ ΡΠ°ΡΡΡΡΠ° ΠΌΠ°ΡΡΠΈΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠΎΠ² Π² ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΠΎΠΌ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅.
ΠΠΎΠΌΠΈΠΌΠΎ ΠΏΠ°ΡΠ½ΡΡ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΉ ΡΠ²Π΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΡΠΈΠΏΠ°, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΡ ΠΊΠΎΡΠΎΡΠΊΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΡΠ΄Π΅ΡΠ½ΡΡ ΡΠΈΠ», Π΄Π°Π»ΡΠ½ΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ°Ρ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡΠΌ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ. Π Π ΠΠ‘Π€, ΡΠΈΡΠ»ΠΎ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ ΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ Π² ΡΠ²Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅. ΠΠΎΠ»Π½ΠΎΠ²Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π½Π΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΄ΡΠ° ΡΡΡΠΎΠΈΡΡΡ ΠΏΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ Ρ ΠΠ‘Π€ ΠΈ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ. ΠΠ±ΠΎΠ±ΡΠ΅Π½Π½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΠ€Π Π²ΡΠ²ΠΎΠ΄ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠΎ Π²ΡΠ΅Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΠΠ°ΡΠ»ΠΈ ΡΡΠΈΡΡΠ²Π°Π»ΡΡ ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΎΡΠ½ΡΡ ΠΊΠΎΠΌΠΌΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ°ΠΌΠΈ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡ ΠΈ ΡΠΎΠ½ΠΎΠ½ΠΎΠ².
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΌΠ°ΡΡΠΈΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎ-ΡΠΎΠ½ΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΡ ΡΠ°Π·. Π―Π΄Π΅ΡΠ½ΡΠΉ Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΈΠ°Π½ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ Π΄Π²Π° Π²ΠΈΠ΄Π° ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ — ΡΠΏΠ°ΡΠΈΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈ Π΄Π°Π»ΡΠ½ΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π΅. ΠΠ· ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΌΡΠ»Ρ-ΡΠΈΠΏΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ Π΄Π°Π»ΡΠ½ΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΈΠ»Ρ Π±ΡΠ» ΡΠΎΡ ΡΠ°Π½Π΅Π½ ΡΠΎΠ»ΡΠΊΠΎ ΠΊΠ²Π°Π΄ΡΡΠΏΠΎΠ»ΡΠ½ΡΠΉ ΡΠ»Π΅Π½, ΠΈΠ³ΡΠ°ΡΡΠΈΠΉ, ΠΊΠ°ΠΊ Ρ ΠΎΡΠΎΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠΎΠ»Ρ Π΄Π»Ρ ΡΡΡΡΠΊΡΡΡΡ Π½ΠΈΠ·ΠΊΠΎ Π»Π΅ΠΆΠ°ΡΠΈΡ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠ²Π½ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ. Π ΡΠ°ΠΌΠΊΠ°Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΠ‘Π€ ΠΌΡ ΠΈΠ·ΡΡΠΈΠ»ΠΈ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΠΎΠΏΡΠ°Π²ΠΎΠΊ Π½Π° ΡΠΏΠ΅ΠΊΡΡΡ ΠΈ ΡΠΈΠ»Ρ ΠΎΠ΄Π½ΠΎ-ΡΠ°ΡΡΠΈΡΠ½ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΡΠΎΠ²Π½Ρ Π€Π΅ΡΠΌΠΈ Π² Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΠΈΠ·ΠΎΡΠΎΠΏΠ°Ρ Π±Π°ΡΠΈΡ. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π΄ΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΠ΅ΠΊΡ ΡΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠΎΠ²Π½Π΅ΠΉ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ ΡΠ³Π»ΠΎΠ²ΡΠΌΠΈ ΠΌΠΎΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΈ ΡΠ΅ΡΠ½ΠΎΡΡΡΠΌΠΈ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΡΠΌΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, Π½Π΅ ΡΡΠΈΡΡΠ²Π°Π²ΡΠΈΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ. ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΎΠ³Π»Π°ΡΡΠ΅ΡΡΡ Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΈ ΠΊΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΠ»ΡΡΡΠΈΠ»ΠΎΡΡ ΠΈ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΡΠΈΠ»Ρ Π½ΠΈΠ·ΠΊΠΎ Π»Π΅ΠΆΠ°ΡΠΈΡ ΠΎΠ΄Π½ΠΎ-ΡΠ°ΡΡΠΈΡΠ½ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΡ ΠΏΡΠΈΡΠ»ΠΈ ΠΊ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ, ΡΡΠΎ ΡΡΠ΅Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠ²ΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ Π½ΠΈΠ·ΠΊΠΎ Π»Π΅ΠΆΠ°ΡΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ. ΠΡΠ»ΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ Π2-ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΎΠ² ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π² ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΡΠΏΠΎΠ»ΡΠ½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π΄Π»Ρ ΡΠ΅ΡΠΈΠΈ ΡΠ΅ΡΠ½ΠΎ-ΡΠ΅ΡΠ½ΡΡ ΡΠ΄Π΅Ρ Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ, Π ~ 130. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΡΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΡΠ΅Π²ΠΎΡΡ ΠΎΠ΄ΡΡΠ²ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½Π° Π ΠΠ‘Π€, ΠΏΡΠΈ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΈ ΡΡΠΈΡ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½. ΠΡΠΎ ΠΏΠΎΡΠ»ΡΠΆΠΈΠ»ΠΎ ΠΌΠΎΡΠΈΠ²Π°ΡΠΈΠ΅ΠΉ Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΎΠ² Π² Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΠΈΠ·ΠΎΡΠΎΠΏΠ°Ρ , Π΄Π»Ρ ΠΊΠΎΡΠΎΡΡΡ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΡΡΠΎΠ² ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅, ΠΏΠΎΡΠ²Π»ΡΡΡΠ΅Π΅ΡΡ Π³Π»Π°Π²Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΈΠ·-Π·Π° ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈ ΠΈΠ·-Π·Π° ΡΡΠ΅ΡΠ° ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎ-ΡΠΎΠ½ΠΎΠ½Π½ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ Π² Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π ΠΠ‘Π€ ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½ΠΎ Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΎΠ² Π² Π½Π΅ΡΠ΅ΡΠ½ΡΡ ΡΠ΄ΡΠ°Ρ , ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΎΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΡΠΎΠ³Π»Π°ΡΠΈΡ Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΏΡΠΈ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΊΠ°ΠΊ Π΄Π»Ρ Π½Π΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΄ΡΠ°, ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ Π΅Π³ΠΎ ΡΠ΅ΡΠ½ΠΎ-ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΡΠΎΠ²Π°. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π΅ΡΠ»ΠΈ ΡΠΈΠ»Π° ΠΊΠ²Π°Π΄ΡΡΠΏΠΎΠ»Ρ-ΠΊΠ²Π°Π΄ΡΡΠΏΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΏΠΎΠ΄ΠΎΠ³Π½Π°Π½Π° ΠΏΠΎ ΡΠΏΠ΅ΠΊΡΡΡ Π½Π΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΄ΡΠ°, ΡΠΎ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΌ ΡΠ΅ΡΠ½ΠΎ-ΡΠ΅ΡΠ½ΠΎΠΌ ΠΎΡΡΠΎΠ²Π΅ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π±Π»ΠΈΠΆΠ΅ ΠΊ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΎ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΌ ΠΠ‘Π€. ΠΡΠΎΡ ΡΡΡΠ΅ΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΎΡΠ»Π°Π±Π»Π΅Π½ΠΈΡ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎ-ΡΠΎΠ½ΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ, Π²ΡΠ·Π²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ Π±Π»ΠΎΠΊΠΈΡΠΎΠ²ΠΊΠΎΠΉ. ΠΡΠ΅Π΄ΡΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΠΈΠ»Π° Π ΠΠ‘Π€ ΠΈ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Ρ Π½ΠΈΠ·ΠΊΠΈΠΌΠΈ ΡΠ½Π΅ΡΠ³ΠΈΡΠΌΠΈ Π±ΡΠ΄Π΅Ρ Π·Π°Π²ΠΈΡΠ΅ΡΡ ΠΎΡ Π΅Π΅ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠΎΡΠ΅Π΄Π½ΠΈΠ΅ ΡΠ΅ΡΠ½ΠΎ-ΡΠ΅ΡΠ½ΡΠ΅ ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΡΠ΅ (ΠΈ, ΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π½Π΅ΡΠ΅ΡΠ½ΠΎ-Π½Π΅ΡΠ΅ΡΠ½ΡΠ΅) ΡΠ΄ΡΠ° Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌ Π½Π°Π±ΠΎΡΠΎΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ².
ΠΡΠΎΠ±Π»Π΅ΠΌΠ° Π½Π΅ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΡΠΈΡΠ»Π° ΡΠ°ΡΡΠΈΡ Π² ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΠΠ¨ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΠΈΠΏΠΊΠΈΠ½Π°-ΠΠΎΠ³Π°ΠΌΠΈ Π² ΡΠ°ΠΌΠΊΠ°Ρ Π ΠΠ‘Π€. ΠΠΎΠΌΠΈΠΌΠΎ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ Π½Π΅ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΈΡΠ»Π° ΡΠ°ΡΡΠΈΡ, Π΄ΠΎΡΡΠΎΠΈΠ½ΡΡΠ²ΠΎΠΌ ΡΡΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΏΠΎΡΠΎΠ³ΠΎΠ²ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π΄Π»Ρ ΡΠΈΠ» ΡΠΏΠ°ΡΠΈΠ²Π°-ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ, Π½ΠΈΠΆΠ΅ ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ²Π΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠΈΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π½ΠΎΠΉ Π·Π°ΡΡΠ΄ΠΎΠ²ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΡΠΏΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π² ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΈ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π² ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, Π½ΠΎ ΠΎΠ½ΠΈ Π½Π΅ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½Ρ ΠΏΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅.
1. J. Bartlett, Nature 130 (1932) 165.
2. W. Bartlett, J. de phys. et rad. 7] 4 (2) (1933) 549.
3. M. G. Mayer, On closed shells in nuclei, Phys. Rev. 74 (3) (1948) 235−239.
4. M. G. Mayer, On Closed Shells in Nuclei. II, Phys. Rev. 75 (12) (1949) 1969;1970.5. 0. Haxel, J. H. D. Jensen, H. E. Suess, On the «Magic Numbers» in Nuclear Structure, Phys. Rev. 75 (11) (1949) 1766.
5. K. A. Brueckner, C. A. Levinson, H. M. Mahmoud, Two-Body Forces and Nuclear Saturation. I. Central Forces, Phys. Rev. 95 (1) (1954) 217−228.
6. L. C. Gomes, J. D. Walecka, V. F. Weisskopf, Properties of nuclear matter, Annals of Physics 3 (3) (1958) 241 274.
7. URL http://www.sciencedirect.com/science/article/.
8. B6WBl-4DF54X4−26T/2/788edd24a903f9a8clf51326a61e82el.
9. A. Migdal, Quadrupole and dipole 7-radiation of nuclei, J. Phys. (Moscow) 8 (1944) 331.
10. J. P. Elliott, B. H. Flowers, The Odd-Parity States of 160 and 16N, Proc. R. Soc. Lond. A 242 (1228) (1957) 57−80.
11. H. A. Bethe, Nuclear Many-Body Problem, Phys. Rev. 103 (5) (1956) 1353−1390.81.
12. B. Kay, Single-neutron energies outside 136Xe, Physical Review C 84 (2) (2011) 24 325.
13. K. Jones, Direct reaction measurements with a 132Sn radioactive ion beam, Physical Review C 84 (3) (2011) 34 601.
14. M. B. Tsang, J. Lee, W. G. Lynch, Survey of Ground State Neutron Spectroscopic Factors from Li to Cr Isotopes, Phys. Rev. Lett. 95 (22) (2005) 222 501.
15. M. B. Tsang, J. Lee, S. C. Su, J. Y. Dai, M. Horoi, H. Liu, W. G. Lynch, S. Warren, Survey of Excited State Neutron Spectroscopic Factors for Z = 8 — 28 Nuclei, Phys. Rev. Lett. 102 (6) (2009) 62 501.
16. Peter K.A. De Witt Huberts, Evidence for nucleon-nucleon correlations in heavy nuclei from the proton knockout reaction (e, e’p), Nuclear Physics A 507 (1) (1990) 189 203.
17. URL http://www.sciencedirect.com/science/article/.
18. B6TVB-472BFK9−1Y/2/ab2637d532d3df384770f00a86fIc4a6.
19. A. E. L. Dieperink, P. K. A. de Witt Huberts, On High Resolution (e, e'p) Reactions, Ann. Rev. Nucl. Part. Sci. 40 (1990) 239.
20. V. R. Pandharipande, I. Sick, P. K. A. d. Huberts, Independent particle motion and correlations in fermion systems, Rev. Mod. Phys. 69 (3) (1997) 981−991.
21. G. J. Kramer, H. P. Blok, L. Lapikas, A consistent analysis of (e, e'p) and (d, 3He) experiments, Nuclear Physics A 679 (3−4) (2001) 267 286.
22. URL http://www.sciencedirect.com/science/article/.
23. B6TVB-41TNlSF-4/2/c5dee381d620c4abafddcace8b27786b.
24. A. Bohr, B. R. Mottelson, Collective and Individual-particle Aspects of Nuclear Structure, Dan. Mat. Fys. Medd. 27 (16).
25. G. E. Brown, J. A. Evans, D. J. Thouless, Single particle strengths in nuclei, Nuclear Physics 45 (1963) 164 176.
26. URL http://www.sciencedirect.com/science/article/.
27. B73DR-472BDMD-M/2/7ee03274175587181b3f41a7e6693blc.
28. Π’. Π’. S. Kuo, E. U. Baranger, M. Baranger, A shell-model calculation of the odd-mass tin isotopes, Nuclear Physics A 79 (1965) 513−549.
29. Y. K. Gambhir, R. Raj, M. K. Pal, Oneand Three-Quasiparticle States of Odd-Mass Ni Isotopes, Phys. Rev. 162 (4) (1967) 1139−1146.
30. V. V. der Sluys, D. V. Neck, M. Waroquier, J. Ryckebusch, Fragmentation of single-particle strength in spherical open-shell nuclei: Application to the spectral functions in 142Nd, Nuclear Physics A 551 (2) (1993) 210 240.
31. URL http://www.sciencedirect.com/science/article/.
32. B6TVB-473FR6W-Bl/2/a60522cl80cled6eflabl5afdl522d8d.
33. D. M. Brink, R. A. Broglia, Nuclear Superfluidity: Pairing in Finite Systems, Cambridge University Press, 2005.
34. J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of Superconductivity, Phys. Rev. 108 (5) (1957) 1175−1204.
35. H. ΠΠΎΠ³ΠΎΠ»ΡΠ±ΠΎΠ², Π Π½ΠΎΠ²ΠΎΠΌ ΠΌΠ΅ΡΠΎΠ΄Π΅ Π² ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ²Π΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ I, ΠΠΠ’Π€ 34 (1958) 58.
36. Π. ΠΠΎΠ³ΠΎΠ»ΡΠ±ΠΎΠ², Π Π½ΠΎΠ²ΠΎΠΌ ΠΌΠ΅ΡΠΎΠ΄Π΅ Π² ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ²Π΅ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π, ΠΠΠ’Π€ 34 (1958) 73.
37. Π. ΠΠ°Π½Π΄Π°Ρ, Π ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ΅ΡΠΌΠΈ-ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ, ΠΠΠ’Π€ 35 (1958) 97.
38. A. Bohr, Π. R. Mottelson, D. Pines, Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State, Phys. Rev. 110 (4) (1958) 936−938.
39. V. G. Soloviev, On the superfluid state of the atomic nucleus, Nuclear Physics 9 (4) (1958) 655 664.
40. URL http://www.sciencedirect.com/science/article/.
41. B73DR-470F7N8−2T/2/4fcf7c5611916d07122b280cb40d86e4.
42. S. Belyaev, Effect of pairing correlations on nuclear properties, Mat. Fys. Medd. Dan. Vid. Selsk. 31 (1959) 11.
43. A. B. Migdal, Superfluidity and the moments of inertia of nuclei, Nuclear Physics 13 (5) (1959) 655 674.
44. URL http://www.sciencedirect.com/science/article/.
45. B73DR-470NYDl-TP/2/51b5fbf378e6994482ad7efb9325115a.
46. Soloviev V.G., Effect of Pairing Correlation on Energies and /^-Transition Probabilities in Deformed Nuclei, Mat. Fys. Skr. Dan. Vid. Selsk. 1 (1961) 11.
47. D. Rowe, Nuclear Collective Motion, Menthuen, London, 1970.
48. M. Rho, J. O. Rasmussen, Comparisons of BCS Nuclear Wave Functions with Exact Solutions, Phys. Rev. 135 (6B) (1964) B1295-B1301.
49. A. K. Kerman, R. D. Lawson, M. H. Macfarlane, Accuracy of the Superconductivity Approximation for Pairing Forces in Nuclei, Phys. Rev. 124 (1) (1961) 162−167.
50. I. Unna, J. Weneser, The Number Problem in Bardeen-Cooper-Schrieffer and Random-Phase-Approximation Nuclear Calculations, Phys. Rev. 137 (6B) (1965) B1455-B1465.
51. H. J. Lipkin, Collective motion in many-particle systems: Part 1. The violation of conservation laws, Annals of Physics 9 (2) (1960) 272 291.
52. URL http://www.sciencedirect.com/science/article/.
53. B6WBl-4DF4YF7-TP/2/256f40b26c3697da6a2c35457501cd4b.
54. Y. Nogami, Improved Superconductivity Approximation for the Pairing Interaction in Nuclei, Phys. Rev. 134 (2B) (1964) B313-B321.
55. N. Meshkov, A. J. Glick, H. J. Lipkin, Validity of many-body approximation methods for a solvable model: (II). Linearization procedures, Nuclear Physics 62 (2) (1965) 199 210.
56. URL http://www.sciencedirect.com/science/article/.
57. B73DR-470NYG3-VN/2/f52b78478dbdfc359c45b208f90935af.
58. A. J. Glick, H. J. Lipkin, N. Meshkov, Validity of many-body approximation methods for a solvable model: (III). Diagram summations, Nuclear Physics62 (2) (1965) 211 224.
59. URL http://www.sciencedirect.com/science/article/.
60. B73DR-470NYG3-VP/2/f505f2071bf7e5cl433c3cc3dbf46779.
61. H. J. Lipkin, N. Meshkov, A. J. Glick, Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nuclear Physics 62 (2) (1965) 188 198.
62. URL http://www.sciencedirect.com/science/article/.
63. B73DR-470NYG3-VM/2/18 4165e7bc035a330188bb5c2be230f9.
64. D. C. Zheng, D. W. L. Sprung, H. Flocard, Pairing correlations studied in the two-level model, Phys. Rev. C 46 (4) (1992) 1355−1363.
65. R. Capote, A. Gonzalez, Stochastic number projection method in the pairing-force problem, Phys. Rev. C 59 (6) (1999) 3477−3480.
66. K. Hagino, G. F. Bertsch, Correlation energy of the pairing Hamiltonian, Nuclear Physics A 679 (2) (2000) 163 174.
67. URL http://www.sciencedirect.com/science/article/.
68. B6TVB-41GlV9D-3/2/5597da92e6411e607cdf19a787bblaad.
69. D. R. Bes, R. A. Broglia, Pairing vibrations, Nuclear Physics 80 (2) (1966) 289 -313.
70. URL http://www.sciencedirect.com/science/article/.
71. B73DR-470WKPS-FC/2/98c97e868fe0346a07a7dff273fa05dl.
72. J. Bang, J. Krumlinde, Model calculations with pairing forces, Nuclear Physics A 141 (1) (1970) 18 32.
73. URL http://www.sciencedirect.com/science/article/.
74. B6TVB-473NJNN-D7/2/4f7af27f4cdd897119722b49abld36e7.
75. R. W. Richardson, A restricted class of exact eigenstates of the pairing-force Hamiltonian, Physics Letters 3 (6) (1963) 277 279.
76. URL http://www.sciencedirect.com/science/article/.
77. B6X44−46R121S-14/2/6 020 1143el9021d34460502f992af97f.
78. R. W. Richardson, N. Sherman, Exact eigenstates of the pairing-force Hamiltonian, Nuclear Physics 52 (1964) 221 238.
79. URL http://www.sciencedirect.com/science/article/.
80. B73DR-46XYMT7-M/2/d023elfd9d5699f2b68ce74dd3ff0650.
81. J. Dukelsky, G. G. Dussel, J. G. Hirsch, P. Schuck, Comparison between exact and approximate treatments of the pairing interaction for finite fermi systems, Nuclear Physics A 714 (1−2) (2003) 63 74.
82. URL http://www.sciencedirect.com/science/article/.
83. B6TVB-475B5G5−2/2/719c4e590e7cbbcac0655f94ac3d4ebb.
84. D. J. Dean, M. Hjorth-Jensen, Pairing in nuclear systems: from neutron stars to finite nuclei, Rev. Mod. Phys. 75 (2) (2003) 607−656.
85. D. Pines, D. Bohm, A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions, Phys. Rev. 85 (2) (1952) 338−353.
86. V. Soloviev, Theory of Complex Nuclei, Pergamon, Oxford, 1976.
87. A. Bohr, B. Mottelson, Nuclear structure, Vol. 1, Benjamin New York, 1969.
88. A. Bohr, B. Mottelson, Nuclear structure, Vol. 2, Benjamin New York, 1975.
89. V. V. Pashkevich, R. A. Sardaryan, Excited states of non-axial odd-mass nuclei, Nuclear Physics 65 (3) (1965) 401 418.
90. URL http://www.sciencedirect.com/science/article/.
91. B73DR-470W8VJ-BN/2/2f4a3a29512e7dce970045aa95d9168a.
92. V. Bernard, N. V. Giai, Effects of collective modes on the single-particle states and the effective mass in 208Pb, Nuclear Physics A 348 (1) (1980) 75−92.
93. URL http://www.sciencedirect.com/science/article/.
94. B6TVB-47 3120F-SV/2/30ebce6b37d2f470dlfc79c2eb0fd697.
95. G. F. Bertsch, P. F. Bortignon, R. A. Broglia, Damping of nuclear excitations, Rev. Mod. Phys. 55 (1) (1983) 287−314.
96. V. Soloviev, Theory Of Atomic Nuclei: Quasiparticles And Phonons, Institute Of Physics Publishing, 1992.
97. P. F. Bortignon, Microscopic models for the particle-vibration coupling in exotic nuclei.
98. A. Arima, F. Iachello, Collective Nuclear States as Representations of a SU (6) Group, Phys. Rev. Lett. 35 (16) (1975) 1069−1072.
99. P. Π. ΠΠΆΠΎΠ»ΠΎΡ, Π€. ΠΡΠ½Π°Ρ, Π. Π―Π½ΡΠ΅Π½, ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π³Π°ΠΌΠΈΠ»ΡΡΠΎΠ½ΠΈΠ°Π½Π° Π² ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ΄ΡΠ°, Π’ΠΠ€ 20 (1974) 112.
100. F. Iachello, Π. Scholten, Interacting Boson-Fermion Model of Collective States in Odd-Π Nuclei, Phys. Rev. Lett. 43 (10) (1979) 679−682.
101. C. Alonso, J. Arias, R. Bijker, F. Iachello, A calculation of low-lying collective states in odd-even nuclei, Phys. Lett. Π 144 (1984) 141.
102. Π‘. E. Alonso, J. M. Arias, M. Lozano, Nuclear structure studies of the odd-mass Ba and La isotopes with the IBFA-2 model, J.Phys. G 14 (1987) 1269.
103. F. Iachello, P. V. Isacker, The Interacting Boson-Fermion Model, Cambridge University Press, 1991.
104. V. Paar, S. Brant, SU (6) Particle-Quadrupole Phonon Model for an Odd System and the Dyson representation, Physics Letters Π 105 (2−3) (1981) 81 83.
105. URL http://www.sciencedirect.com/science/article/.
106. B6TVN-470N6CN-FJ/2/ee878a4daf19a3ac469defal2daad74b.
107. L. A. Malov, V. G. Soloviev, Fragmentation of single-particle states and neutron strength functions in deformed nuclei, Nuclear Physics A 270 (1) (1976) 87−107.
108. URL http://www.sciencedirect.com/science/article/.
109. B6TVB-471XCRD-MG/2/089f9elb2d2980a7a9195af486a60a8f.
110. D. Dambasuren, V. G. Soloviev, C. Stoyanov, A. I. Vdovin, Semi-microscopic calculation of the neutron strength functions of spherical nuclei, Journal of Physics G: Nuclear Physics 2 (1) (1976) 25.
111. URL http://stacks.iop.org/0305−4616/2/i=l/a=004.
112. Π. Π. ΠΠ΄ΠΎΠ²ΠΈΠ½, Π. Π. ΠΠΎΡΠΎΠ½ΠΎΠ², Π. Π. Π‘ΠΎΠ»ΠΎΠ²ΡΠ΅Π², Π§. Π‘ΡΠΎΡΠ½ΠΎΠ², ΠΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎ-ΡΠΎΠ½ΠΎΠ½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ΄ΡΠ°. V. ΠΠ΅ΡΠ΅ΡΠ½ΡΠ΅ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΄ΡΠ°, ΠΠ§ΠΠ― 16 (1985) 246−279.
113. Π‘. Z. Khuong, V. G. Soloviev, V. V. Voronov, The effect of the Pauli principle on the fragmentation of one-quasiparticle states in spherical nuclei, J. Phys. G 7 (1981) 151−163.
114. S. Mishev, V. V. Voronov, Effects of ground state correlations on the structure of odd-mass spherical nuclei, Physical Review Π‘ (Nuclear Physics) 78 (2) (2008)024310.
115. URL http://link.aps.org/abstract/PRC/v78/e024310.
116. N. Sandulescu, A. Insolia, J. Blomqvist, R. J. Liotta, Three-quasiparticle states analysis in odd-mass lead isotopes, Phys. Rev. Π‘ 47 (2) (1993) 554−560.
117. Π. ji ΠΠ°Π³Π°, An Extended Boson Approximation in the Theory of Nuclear Structure, Progress of Theoretical Physics 32 (1) (1964) 88−105.
118. URL http://ptp.ipap.jp/link?PTP/32/88/.
119. K. Ikeda, T. Udagawa, H. Yamaura, On the Effect of Pauli Principle on Collective Vibrations in Nuclei, Progress of Theoretical Physics 33 (1) (1965) 22−37. URL http://ptp.ipap.jp/link?PTP/33/22/.
120. R. Jolos, W. Rybarska, Self-consistent QRPA in the theory of nuclear structure, Z. Physik A296 (1980) 73.
121. D. Karadjov, V. V. Voronov, F. Catara, Ground state correlations and charge transition densities, Physics Letters Π 306 (1993) 197−200.
122. D. Karadjov, V. V. Voronov, F. Catara, M. Grinberg, A. P. Severyukhin, Effects of the ground state correlations on the structure of vibrational states, Nuclear Physics A 643 (3) (1998) 259−271.
123. URL http://linkinghub.elsevier.com/retrieve/pii/1. S0375947498005636.
124. V. G. Soloviev, Fragmentation of single-particle and collective motions in the quasiparticle-phonon nuclear model, Progress in Particle and Nuclear Physics 19 (1987) 107 165.
125. URL http://www.sciencedirect.com/science/article/.
126. B6TJC-471XM5F-36/2/4176d556f62f9fbe732b9bde51c3f935.
127. Π‘ΠΎΠ»ΠΎΠ²ΡΠ΅Π² Π. Π., Π‘ΡΠΎΡΠ½ΠΎΠ²Π° Π., Π‘ΡΠΎΡΠ½ΠΎΠ² Π§., ΠΠ·Π². ΠΠ Π‘Π‘Π‘Π , ΡΠ΅Ρ. ΡΠΈΠ·. 44 (1980) 1938.
128. Π. Waroquier, Π. Heyde, On quasiparticle interactions in the spherical N = 82 doubly even nuclei, Nuclear Physics A 164 (1) (1971) 113 139.
129. URL http://www.sciencedirect.com/science/article/.
130. B6TVB-471XGVC-lMB/2/c7ca368255a7c5763abe405a43eba95c.
131. Π. ΠΠ΄ΠΎΠ²Π½Π½, Π. Π‘ΠΎΠ»ΠΎΠ²ΡΠ΅Π², ΠΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠ΄Π½ΠΎΡΠ°ΡΡΠΈΡ-Π½ΡΡ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ°ΡΡΠΈΡΠ½ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΠΏΠΎ ΡΡΠΎΠ²Π½ΡΠΌ Π½Π΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΄ΡΠ°, Π’ΠΠ€ 19 (2) (1974) 275−282.
132. D. Thouless, Vibrational states of nuclei in the random phase approximation, Nuclear Physics 22 (1) (1961) 78 95.
133. URL http://www.sciencedirect.com/science/article/.
134. B73DR-470F089−8/2/9d34693fc40a2dd2941122002cadcc02.
135. G. E. Brown, J. A. Evans, D. J. Thouless, Vibrations of spherical nuclei, Nuclear Physics 24 (1) (1961) 1−17.
136. URL http://www.sciencedirect.com/science/article/.
137. B73DR-48VP5XP-2/2/53fd3b6bab56f498696bd827c4933d64.
138. D. J. Rowe, Methods for Calculating Ground-State Correlations of Vibrational Nuclei, Phys. Rev. 175 (4) (1968) 1283−1292.
139. J. D. Providencia, An Extension of the Random Phase Approximation, Nuclear Physics A 108 (1968) 589−608.
140. H. Lenske, J. Wambach, RPA ground state correlations in nuclei, Physics Letters B 249 (3−4) (1990) 377 380.
141. URL http://www.sciencedirect.com/science/article/.
142. B6TVN-46YT18V-3VK/2/4b673d66d463a4231ba543b9bb38bcfd.
143. S. Catara F., Dang N.D., Ground-State correlations beyond RPA, Nuclear Physics A 579 (1994) 1−12.
144. J. Dukelsky, P. Schuck, Self consistent RPA for superfluid Fermi systems, Physics Letters B 387 (1996) 233−238.
145. Y. Nogami, I. Zucker, A note on the pairing interaction in nuclei, Nuclear Physics 60 (2) (1964) 203−208.
146. URL http://linkinghub.elsevier.com/retrieve/pii/29 558 264 906 558.
147. Y. Nogami, On the superconductivity theory of the nuclear pairing interaction, Physics Letters 15 (4) (1965) 335 337.
148. URL http://www.sciencedirect.com/science/article/.
149. B6X44−47DBYG3−4P/2/4f58e2fba3b3b2dcdafda77elccbl525.
150. J. F. Goodfellow, Y. Nogami, On the superconductivity approximation for the nuclear pairing interaction, Can. J. Phys. 44 (1966) 1321 1327.
151. H. C. Pradhan, Y. Nogami, J. Law, Study of approximations in the nuclear pairing-force problem, Nuclear Physics A 201 (2) (1973) 357 368.
152. URL http://www.sciencedirect.com/science/article/.
153. B6TVB-471XG63-lD3/2/662f0fddb488014a7f3df6c00bla67ac.
154. S. Mishev, D. Karadjov, V. Voronov, Extended random-phase approximation and Lipkin-Nogami method, Physics of Atomic Nuclei 66 (2003) 1878−1882, 10.1134/1.1 619 499.
155. URL http://dx.doi.org/10.1134/1.16 194 991. Π 9.
156. M. Bender, G. F. Bertsch, P.-H. Heenen, Global study of quadrupole correlation effects, Phys. Rev. Π‘ 73 (3) (2006) 34 322.
157. G. Sachler, Direct Nuclear Reactions, Oxford Univ. Press, Oxford, 1983.
158. URL http://www.sciencedirect.com/science/article/.
159. B6TVB-472CGNP-3C/2/edal558666f457729ecl2633cb0c2bda.
160. G. Simon, C. Schmitt, F. Borkowski, V. Walther, Absolute electron-proton cross sections at low momentum transfer measured with a high pressure gas target system, Nuclear Physics A 333 (3) (1980) 381 391.
161. URL http://www.sciencedirect.com/science/article/.
162. B6TVB-471XF5P-140/2/7d60elae70c47da8d7dff80045b2fafa.
163. S. Mishev, V, Voronov, Extended approximation for the lowest-lying states in odd-mass nuclei, Physical Review Π‘ 82 (6) (2010) 64 312.
164. URL http://link.aps.org/doi/10.1103/PhysRevC.82.64 312.
165. Π. Π. ΠΠ»ΠΈΠΊΠΎΠ², Π. M. ΠΡΠΌΠΈΠ½ΠΎΠ², Π . Π. ΠΠ°Π·ΠΌΠΈΡ Π΄ΠΈΠ½ΠΎΠ², Π§. 3. ΠΡ ΡΠΎΠ½Π³, ΠΠΈΠ·ΠΊΠΎΠ»Π΅ΠΆΠ°-ΡΠΈΠ΅ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ 131 La ΠΈ Ρ-133ΠΠ° Π² ΡΠ°ΠΌΠΊΠ°Ρ ΠΊΠ²Π°Π·ΠΈΡΠ°ΡΡΠΈΡΠ½ΠΎ-ΡΠΎΠ½ΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΠ·Π². ΠΠ Π‘Π‘Π‘Π , ΡΠ΅Ρ. ΡΠΈΠ·. Π (1981) 79.102. ENSDF database.
166. URL http://www.nndc.bnl.gov/ensdf/.