История изучения.
Технологические особенности получения продуктов брожения
В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки. В 30-е годы XIX века Ш. Каньяр де Латур и Теодор Шванн… Читать ещё >
История изучения. Технологические особенности получения продуктов брожения (реферат, курсовая, диплом, контрольная)
Лавуазье в конце XVIII века установил, что в ходе спиртового брожения сахар разлагается на спирт и углекислый газ. Вскоре после этого Гей-Люссак показал, что суммарная масса спирта и углекислого газа равна массе расщепленного сахара.
В 30-е годы XIX века Ш. Каньяр де Латур и Теодор Шванн окончательно установили, что дрожжи (открытые Антони ван Левенгуком) — это живые клетки, и высказали идею о том, что брожение — результат их жизнедеятельности. Эта идея была отвергнута ведущими химиками того времени — Либихом, Берцелиусом и др.
Брожение было подробно изучено во второй половине XIX века Луи Пастером. Пастер убедительно доказал, вопреки господствовавшей тогда точке зрения, что брожение — процесс не чисто химический и происходит только в присутствии живых клеток микроорганизмов.
В 1893—1898 гг. Э. Бухнер показал, что брожение может происходить не только в клетках дрожжей, но и в бесклеточном дрожжевом экстракте (Нобелевская премия по химии 1907 г.).
Биохимия
Брожение — это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.
Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD+), который требуется для гликолиза. Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов — единственный источник АТФ в анаэробных условиях.
В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.
Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высоко окисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до двуокиси углерода. В ходе разных типов брожения на одну молекулу глюкозы, получается от двух до четырёх молекул АТФ (ср. около 36 молекул путём аэробного дыхания). Однако даже у позвоночных брожение (анаэробное окисление глюкозы) используется как эффективный способ получения энергии во время коротких периодов интенсивной мышечной работы, когда перенос кислорода к мышцам недостаточен для поддержания аэробного метаболизма. Брожение у позвоночных помогает во время коротких периодов интенсивной работы, но не предназначено для длительного использования. Например, у людей гликолиз с образованием молочной кислоты дает энергию на период от 30 секунд до 2 минут. Скорость генерации АТФ примерно в 100 раз больше, чем при окислительном фосфорилировании. Уровень pH в цитоплазме быстро падает, когда в мышце накапливается молочная кислота, в конечном итоге ингибируя ферменты, вовлеченные в процесс гликолиза.