Классификация вычислительных систем
Симметричные мультипроцессоры (SMP) состоят из совокупности процессоров, имеющих разделяемую общую память с единым адресным пространством и функционирующих под управлением одной операционной системы. Недостаток — число процессоров, имеющих доступ к общей памяти, нельзя сделать большим. Существует предел наращивания числа процессоров, превышение которого ведет к быстрому росту потерь… Читать ещё >
Классификация вычислительных систем (реферат, курсовая, диплом, контрольная)
Существуют различные классификации, преследующие разные цели. При разработке параллельного алгоритма наиболее важно знать тип оперативной памяти, т.к. она определяет способ взаимодействия между частями параллельной программы. В зависимости от организации подсистем оперативной памяти параллельные компьютеры можно разделить на следующие два класса.
Системы с разделяемой памятью (мультипроцессоры), у которых имеется одна виртуальная память, а все процессоры имеют одинаковый доступ к данным и командам, хранящимся в этой памяти (uniform memory access или UMA). По этому принципу строятся векторные параллельные процессоры (parallel vector processor или PVP) и симметричные мультипроцессоры (symmetric multiprocessor или SMP).
Системы с распределенной памятью (мультикомпьютеры), у которых каждый процессор имеет свою локальную оперативную память, а у других процессоров доступ к этой памяти отсутствует. При работе на компьютере с распределенной памятью необходимо создавать копии исходных данных на каждом процессоре. В случае системы с разделяемой памятью достаточно один раз задать соответствующую структуру данных и разместить ее в оперативной памяти.
Указанные два типа организации памяти могут быть реализованы в различных архитектурах. Рассмотрим различные классификации параллельных компьютеров, указывая там, где это имеет значение, способ организации оперативной памяти.
Исторически наиболее ранней является классификация М. Флинна (1966). Классификация основана на понятии потока, под которым понимается последовательность команд или данных, обрабатываемых процессором. На основе числа потоков команд и потоков данных выделяют четыре класса архитектур:
SISD (Single Instruction stream/Single Data stream) — один поток команд и один поток данных;
SIMD (Single Instruction stream/Multiple Data stream) — один поток команд и множество потоков данных;
MISD (Multiple Instruction stream/Single Data stream) — множество потоков команд и один поток данных;
MIMD (Multiple Instruction stream/Multiple Data stream) — множество потоков команд и множество потоков данных.
В настоящее время подавляющее число «серьезных» компьютеров реализуется в классе MIMD-архитектур. При этом рассматривают следующие основные подклассы.
Векторно-конвейерные компьютеры, в которых используется набор векторных команд, обеспечивающих выполнение операций с массивами независимых данных за один такт. Типичным представителем данного направления является линия «классических» векторно-конвейерных компьютеров CRAY.
Массово-параллельные (чаще называемые также массивно-параллельные) компьютеры с распределенной памятью. В данном случае микропроцессоры, имеющие каждый свою локальную память, соединяются посредством некоторой коммуникационной среды. Достоинство этой архитектуры — возможность наращивать производительности путем добавления процессоров. Недостаток — большие накладные расходы на межпроцессорное взаимодействие.
Симметричные мультипроцессоры (SMP) состоят из совокупности процессоров, имеющих разделяемую общую память с единым адресным пространством и функционирующих под управлением одной операционной системы. Недостаток — число процессоров, имеющих доступ к общей памяти, нельзя сделать большим. Существует предел наращивания числа процессоров, превышение которого ведет к быстрому росту потерь на межпроцессорный обмен данными.
Кластеры образуются из вычислительных модулей любого из рассмотренных выше типов, объединенных системой связи или посредством разделяемой внешней памяти. Могут использоваться как специализированные, так и универсальные сетевые технологии. Это направление, по существу, является комбинацией предыдущих трех.
Наиболее важным при разработке параллельного алгоритма является деление на компьютеры с общей и распределенной памятью. Для компьютеров с общей памятью пользователю не нужно заботиться о распределении данных, достаточно предусмотреть лишь затраты на выбор необходимых данных из этой памяти. При реализации параллельного алгоритма на компьютерах с распределенной памятью необходимо продумать рациональную, с точки зрения потерь на обмен данными, схему их размещения.