Π—Π°ΠΊΠ°Π·Π°Ρ‚ΡŒ курсовыС, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹...
ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° Π·Π°ΠΊΠ°Π·. НСдорого!

ΠžΠ±Ρ‰Π°Ρ тСория ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΠžΠ’О ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ затруднСния Π² ΡΠ²ΡΠ·ΠΈ с Π½Π΅ΠΈΠ½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ энСргии Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ данная энСргия Π½Π΅ ΠΎΠΏΠΈΡΡ‹Π²Π°Π΅Ρ‚ся Ρ‚Π΅Π½Π·ΠΎΡ€ΠΎΠΌ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ тСорСтичСски ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ способами. Π’ ΠΊΠ»Π°ΡΡΠΈΡ‡Π΅ΡΠΊΠΎΠΉ ОВО Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° описания спин-ΠΎΡ€Π±ΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ взаимодСйствия (Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ спин протяТённого ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠ³ΠΎ опрСдСлСния). БчитаСтся, Ρ‡Ρ‚ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠžΠ±Ρ‰Π°Ρ тСория ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π’ ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΠΎΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ (ОВО) гравитация рассматриваСтся ΠΈΠ·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ Π½Π΅ ΠΊΠ°ΠΊ силовоС взаимодСйствиС, Π° ΠΊΠ°ΠΊ проявлСниС искривлСния пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² ΠžΠ’О гравитация интСрпрСтируСтся ΠΊΠ°ΠΊ гСомСтричСский эффСкт, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ пространство-врСмя рассматриваСтся Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π½Π΅Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ (Ρ‚ΠΎΡ‡Π½Π΅Π΅ псСвдо-Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ) Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π“Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ (ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ Π½ΡŒΡŽΡ‚ΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°), ΠΈΠ½ΠΎΠ³Π΄Π° Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ»Π΅ΠΌ тяготСния, Π² ΠžΠ’О отоТдСствляСтся с Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹ΠΌ мСтричСским ΠΏΠΎΠ»Π΅ΠΌ — ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π° Π½Π°ΠΏΡ€ΡΠΆΡ‘Π½Π½ΠΎΡΡ‚ΡŒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля — с Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠΉ ΡΠ²ΡΠ·Π½ΠΎΡΡ‚ΡŒΡŽ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, опрСдСляСмой ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΎΠΉ.

Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ ОВО являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ мСтричСского Ρ‚Π΅Π½Π·ΠΎΡ€Π°, Π² ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΠΈ Π·Π°Π΄Π°ΡŽΡ‰ΠΈΡ… гСомСтричСскиС свойства пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΏΠΎ ΠΈΠ·Π²Π΅ΡΡ‚Π½ΠΎΠΌΡƒ Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ источников энСргии-ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π² Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ систСмС Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π’ ΡΠ²ΠΎΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Π·Π½Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ позволяСт Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π½Ρ‹Ρ… частиц, Ρ‡Ρ‚ΠΎ эквивалСнтно знанию свойств поля тяготСния Π² Π΄Π°Π½Π½ΠΎΠΉ систСмС. Π’ ΡΠ²ΡΠ·ΠΈ с Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹ΠΌ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ОВО, Π° Ρ‚Π°ΠΊΠΆΠ΅ со ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹ΠΌ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ обоснованиСм Π΅Ρ‘ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΈ, считаСтся, Ρ‡Ρ‚ΠΎ гравитация Ρ‚Π°ΠΊΠΆΠ΅ носит Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€. Одним ΠΈΠ· ΡΠ»Π΅Π΄ΡΡ‚Π²ΠΈΠΉ являСтся Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Π½Π΅ Π½ΠΈΠΆΠ΅ ΠΊΠ²Π°Π΄Ρ€ΡƒΠΏΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ порядка.

Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΠžΠ’О ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ затруднСния Π² ΡΠ²ΡΠ·ΠΈ с Π½Π΅ΠΈΠ½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ энСргии Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поля, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ данная энСргия Π½Π΅ ΠΎΠΏΠΈΡΡ‹Π²Π°Π΅Ρ‚ся Ρ‚Π΅Π½Π·ΠΎΡ€ΠΎΠΌ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ тСорСтичСски ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ способами. Π’ ΠΊΠ»Π°ΡΡΠΈΡ‡Π΅ΡΠΊΠΎΠΉ ОВО Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° описания спин-ΠΎΡ€Π±ΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ взаимодСйствия (Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ спин протяТённого ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠ³ΠΎ опрСдСлСния). БчитаСтся, Ρ‡Ρ‚ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ с ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ нСпротиворСчивости (ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… сингулярностСй).

Однако ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ОВО подтвСрТдаСтся Π΄ΠΎ ΡΠ°ΠΌΠΎΠ³ΠΎ послСднСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (2012 Π³ΠΎΠ΄). ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ ΡΠΉΠ½ΡˆΡ‚Π΅ΠΉΠ½ΠΎΠ²ΡΠΊΠΎΠΌΡƒ, Π½ΠΎ ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹Π΅ для соврСмСнной Ρ„ΠΈΠ·ΠΈΠΊΠΈ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΈ приводят ΠΊ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅ΠΌΡƒ с ΠžΠ’О Π² Π½ΠΈΠ·ΠΊΠΎΡΠ½Π΅Ρ€Π³Π΅Ρ‚ичСском ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈ Π΄ΠΎΡΡ‚ΡƒΠΏΠ½ΠΎ сСйчас ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ΅.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ