Заказать курсовые, контрольные, рефераты...
Образовательные работы на заказ. Недорого!

Проблема изменения климата

РефератПомощь в написанииУзнать стоимостьмоей работы

К внешним геофизическим факторам относятся масса и состав атмосферы, скорость вращения Земли, расположение материков и океанов на поверхности Земли, вулканические извержения. Скорость вращения Земли отчасти определяет интенсивность и характер циркуляции атмосферы, разные радиационные и теплоемкостные характеристики поверхности суши и океана, влияет на радиационный режим, теплообмен между… Читать ещё >

Проблема изменения климата (реферат, курсовая, диплом, контрольная)

Проблеме изменения климата уделяется очень большое внимание ввиду ее важности и актуальности. Колебания температуры воздуха, суммы осадков, а также других метеорологических величин, оказывают огромное влияние на деятельность человека (сельское хозяйство, экономика). Климат меняется постоянно, но в последние столетия он стал более нестабильным по сравнению с предшествующим периодом, в результате чего встал острый вопрос о мониторинге, наблюдениях за тенденциями в изменении климата.

Изменения климата обусловлены переменами в земной атмосфере, процессами, происходящими в других частях Земли, таких как океаны, ледники, а также эффектами, сопутствующими деятельности человека. Внешние процессы, формирующие климат, — это изменения солнечной радиации и орбиты Земли. К числу основных факторов и причин, определяющих эволюцию глобального климата относятся следующие:

  • · изменение размеров и взаимного расположения материков и океанов,
  • · изменение светимости солнца,
  • · изменения параметров орбиты Земли,
  • · изменение прозрачности атмосферы и ее состава в результате изменений вулканической активности Земли,
  • · изменение концентрации парниковых газов (СО2 и CH4) в атмосфере,
  • · изменение отражательной способности поверхности Земли (альбедо),
  • · изменение количества тепла, имеющегося в глубинах океана.

Изменения, которые нас ожидают, но, на мой взгляд, далеки от катастрофы. Если понять, что происходит, понять то, что эти изменения неотвратимы, чтобы человек не делал: приняли Киотский протокол, не приняли, будем мы что-то ограничивать или нет. Климат меняется не только в результате антропогенного воздействия, но и в связи с космическими и геофизическими факторами: поведением Солнца, вулканов, океанической, атмосферной циркуляции, положением Юпитера, Сатурна и Луны по отношению к Земле.

Факторы изменения климата климат температура воздух стратосфера Археологические исследования однозначно доказывают, что климат планеты Земля изменялся достаточно резко. Для объяснения причин этого существует множество гипотез, учитывающих астрономические и геофизические факторы.

К.Я. Кондратов и Е. Борисенков пришли к выводу, что климат планеты сохранится неизменным, если не изменится расстояние Земли от Солнца, орбита Земли вокруг Солнца, скорость ее движения и суточного вращения и угол наклона оси вращения Земли к плоскости эклиптики.

По мнению М. О. Френкеля, с начала 40-х гг. прошлого столетия начался период общего потепления. В это время, влияние антропогенных факторов только начинало проявляться, так что повышение температуры скорее носило естественный характер. Однако, с 70-х гг. естественное потепление усилилось влиянием деятельности человека и в итоге стало более значимым.

Климатическая система Земли испытывает воздействие ряда факторов как внешних, так и возникающих в самой системе. Из внешних факторов наиболее четко проявлялись колебания прозрачности атмосферы вулканогенного характера, а из вторых — взаимодействие океанов и льдов, а также разных частей океанов между собой. При этом указанные факторы налагаются один на другой, усиливаясь при совпадении фаз и ослабевая при их различии. [3].

Одним из важнейших звеньев в проблеме солнечно-атмосферных связей является стратосфера, которой отводится роль триггерного (спускового) элемента, обеспечивающего передачу возмущений в нижние слои атмосферы. В стратосфере происходит поглощение ультрафиолетовой радиации Солнца, и в периоды усиления солнечной активности тепловой баланс стратосферы существенно меняется: увеличивается ее приходная часть, что сказывается на температурном режиме и ее циркуляции. Н. В. Исмагилов выявил положительную асинхронную связь между уровнем солнечной активности в 11-летнем цикле и датами весенних перестроек циркуляции.

Астрономические факторы определяют количество энергии излучения Солнца, приходящей к данному участку верхней границы атмосферы за данный период времени (поток солнечной энергии, инсоляция). Этот суммарный по всем длинам волн поток на среднем расстоянии Земли от Солнца называется солнечной постоянной и равен в среднем 1370 Вт/м2.

К внешним геофизическим факторам относятся масса и состав атмосферы, скорость вращения Земли, расположение материков и океанов на поверхности Земли, вулканические извержения. Скорость вращения Земли отчасти определяет интенсивность и характер циркуляции атмосферы, разные радиационные и теплоемкостные характеристики поверхности суши и океана, влияет на радиационный режим, теплообмен между атмосферой и подстилающей поверхностью, на муссонные эффекты. Очертания океанов определяют направление и характер течений, переносящих тепло из тропической зоны в высокие широты. Во время крупных взрывных вулканических извержений в стратосферу выбрасываются большие массы аэрозолей и газов, рассеивающих и поглощающих Солнца и ИК радиацию Земли и атмосферы.

Внутренние естественные факторы возникают и действуют внутри какой-либо составляющей климатической системы или, зарождаясь в одной из составляющих, действуют на другую. К ним относятся излучение и поглощение энергии атмосферой и океаном, атмосферная циркуляция, криосфера (ледники и подземные льды вечной мерзлоты), биосфера, уменьшающая альбедо подстилающей поверхности.

Можно назвать еще несколько антропогенных факторов, воздействующих на глобальный климат, таких как: антропогенное увеличение содержания в атмосфере газов, создающих в ней парниковый эффект (в первую очередь СО2), острова тепла в городах и промышленных зонах, хозяйственная деятельность человека (строительство водохранилищ, орошение земель, вырубка лесов и др.) [4].

К числу основных факторов и причин, определяющих эволюцию глобального климата Земли авторы [7] относятся следующие:

  • 1) Изменения потоков солнечной радиации, связанные с изменением излучения Солнца
  • 2) Изменения в распределении суши и моря, определяемые тектоникой плит, и связанные с эти процессами изменения орографии суши, циркуляции океана и его уровня
  • 3) Изменения газового состава атмосферы, в первую очередь — концентрация углекислого газа и метана
  • 4) Изменения планетарного альбедо
  • 5) Изменения орбитальных параметров Земли
  • 6) Изменения катастрофического характера — земного и космического

Обзор исследований многолетних колебаний температуры воздуха Температура воздуха является одним из основных климатических показателей. Благодаря изучению пространственной и временной изменчивости температурного режима диагностируются изменения климата в масштабах от локального и регионального до глобального.

М.А. Верещагин, Ю. П. Переведенцев, К. М. Шанталинский, В. Д. Тудрий, С. Ф. Батршина и А. И. Лысая, используя архив аномалий средних годовых температур воздуха, созданного в университете Восточной Англии, выполнили анализ векового хода и межгодовой изменчивости глобального приземного термического режима за 142 года (1856−1997 гг.). Оценки текущего состояния климата существенно расходятся, а число дискутируемых вопросов со временем растет. В связи с этим предпринятый анализ был направлен, прежде всего, на получение независимых уточняющих оценок. Суть полученных ими основных результатов состоит в следующем:

  • 1. Берущий начало с середины XIX века процесс глобального потепления продолжается, что уже привело к повышению средней глобальной температуры на 0, 59 °C. Около 90% этой величины объясняется вариациями CO2 и прозрачностью атмосферы.
  • 2. Внутривековые изменения средних годовых температур воздуха на полушариях имели волнообразную природу и характеризовались заметной обособленностью, что объясняется различиями физического состава и условий функционирования климатической системы на полушариях. Осредненные по Северному полушарию ежегодные значения средних годовых температур воздуха в течение всего исследуемого периода неизменно превышали их значения для Южного полушария; средняя величина разностей средних годовых температур воздуха между полушариями составила 1, 28 °C.

Однако волны тепла на Южном полушарии имели большую продолжительность, а волны холода были короче, чем на Северном полушарии при характерной их продолжительности в 25−30 лет (за 142 года указанные разности уменьшились почти на 0, 06°С).

  • 3. Темпы потепления на Земле и в Северном полушарии в годы появлений волн тепла неуклонно возрастали и, начиная с 1970;х гг., достигли наибольших значений (0, 184 и 0, 229 °C / 10 лет — соответственно). Последнее, вероятно, подтверждает гипотезу о частично антропогенном характере потепления последних десятилетий, на Южном полушарии, — напротив, начиная с 1950;х гг., проявилось заметное «отставание» темпов потепления (0, 104 °C / 10 лет), было связано с ростом затрат тепла, обусловленных таянием материкового льда и тепловым расширением океана, большая часть массы которого находилась здесь.
  • 4. Ускорение темпов потепления последних лет в Северном полушарии сопровождалось мощным всплеском межгодовой изменчивости средних годовых температур воздуха (МИ СГТВ). В то же время в полных рядах МИ СГТВ линейный тренд отсутствует.

Были рассчитаны характеристики линейного тренда (Ю.П. Переведенцев, М. А. Верещагин, К.И. Шанталинский) и, с целью подавления высокочастотного климатического шума, проведено сглаживание рядов температуры низкочастотным фильтром Поттера (L > 3 лет) в ряде метеорологических станций, в частности Перми:

Таблица 1 Характеристики линейного тренда, определенного по средним суточным и срочным значениям температуры воздуха за период 1966;1990 гг.

Время.

Температура.

а °С/год.

p.

R2

Сутки.

0, 065.

0, 000.

0, 001.

00 час.

0, 070.

0, 000.

0, 002.

12 час.

0, 055.

0, 006.

0, 001.

В таблице приведены показатели линейного тренда и дана оценка статистической значимости (a — коэффициент наклона линейного тренда, p — уровень значимости его определения, R2 — коэффициент детерминации, показывающий вклад линейного тренда в общую дисперсию исследуемого ряда).

Анализ результатов расчетов позволил сделать вывод, что наблюдается рост значений температуры в рядах средних суточных значений, а также значений температуры в 00 и 12 часов в исследуемый период. При этом обнаруживается колебательный характер хода температуры.

Таким образом, региональное проявление глобального потепления заметно сказывается на структуре временных рядов температуры.

Было показано, что территориальное распределение средней месячной температуры и среднеквадратических отклонений (СКО) особенно в холодный период (1958;1977) определяется в первую очередь географическими особенностями района — наличием холодных поверхностей Арктики и Гренландии, теплых — Атлантики, юга Европы и Средиземноморья. Береговая линия способствует формированию контрастов в температурных полях. Северные районы отличаются повышенными значениями СКО, достигающими 7, 5 °C. Процесс неоднороден и по вертикали: если вблизи земной поверхности имеет место рост температуры, то в верхней тропосфере и нижней стратосфере, наоборот, падение.

  • 1. www.worldwarming.info
  • 2. www. climatechange.ru
  • 3. Дроздов О. А. Арапов П.П., Лугина К. М., Мосолова Г. И. Об особенностях климата при потеплениях последних столетий // Тез. докл. Всеросс. науч. конф. Казань, 2000. С. 24−26.
Показать весь текст
Заполнить форму текущей работой