Ксеноновое отравление.
Чернобыльская катастрофа
При быстром снижении мощности реактора отравление сначала растёт, так как сразу прекращается выгорание ксенона, а образование его ещё продолжается из распада предшественника ксенона изотопа йод-135 (в цепочке радиоактивного распада продуктов деления), и скорость образования ксенона-135 превышает скорость его распада. Когда эти скорости сравняются, концентрация ксенона и соответственно отравление… Читать ещё >
Ксеноновое отравление. Чернобыльская катастрофа (реферат, курсовая, диплом, контрольная)
Различают два вида отравления: 1) стационарное отравление, когда имеет место равновесие между образованием ксенона и его радиоактивным распадом и выгоранием на стационарном уровне мощности; 2) нестационарное отравление, когда изменение мощности реактора нарушает это равновесие. Стационарное отравление (отрицательная реактивность) может компенсироваться избыточным количеством топлива в реакторе. Но при остановке реактора произойдёт в конце концов его полное разотравление (радиоактивный распад ксенона), и возникает положительная реактивность, которая компенсируется органами регулирования, и тем самым появляется (или увеличивается, если он уже имелся) ОЗР.
При быстром снижении мощности реактора отравление сначала растёт, так как сразу прекращается выгорание ксенона, а образование его ещё продолжается из распада предшественника ксенона изотопа йод-135 (в цепочке радиоактивного распада продуктов деления), и скорость образования ксенона-135 превышает скорость его распада. Когда эти скорости сравняются, концентрация ксенона и соответственно отравление достигнет максимума, а затем начнёт уменьшаться, в конце концов, ксенон полностью распадётся и наступит полное разотравление. Если окажется, что ОЗР на момент перед началом снижения мощности меньше чем отравление в максимуме (см. рис. 2), то запаса реактивности для поддержания мощности реактора не хватит, и он заглохнет. Все стержни регулирования будут полностью извлечены, и реактор нечем удержать в критическом состоянии. Остаётся только ждать, когда распадётся ксенон, и можно будет снова выводить реактор на мощность. Такая ситуация называется йодной ямой.
Поддержание достаточно большого ОЗР, работая на постоянной мощности, гарантирует от попадания реактора в йодную яму, следовательно, от простоев и недовыработки электроэнергии. Но с другой стороны большой ОЗР это больше вредного поглощения в активной зоне реактора, которое можно компенсировать только снижением выгорания (или повышением обогащения урана). Т. е. поддержание как слишком малого, так и слишком большого ОЗР приведёт к неэффективному использованию ядерного топлива и соответственно к потере экономичности АЭС с реактором РБМК-1000. При создании реактора РБМК-1000 оптимальным, видимо, считался ОЗР в диапазоне 1…2% ([10], стр. 34…35).