Заказать курсовые, контрольные, рефераты...
Образовательные работы на заказ. Недорого!

Подсчет деревьев. 
Деревья как частный вид графов

РефератПомощь в написанииУзнать стоимостьмоей работы

Очевидно, что по данному дереву последовательность строится однозначно. Покажем теперь, что по данной последовательности вершин (G) дерево G можно восстановить однозначно. В последовательности 1, 2, …, p существуют вершины, не принадлежащие (G). Выберем первую из них x1 и построим ребро e1 = (x1, y1). Затем удалим x1 из последовательности 1, 2, …, n и y1 удалим из (G). Аналогичным образом… Читать ещё >

Подсчет деревьев. Деревья как частный вид графов (реферат, курсовая, диплом, контрольная)

Теорема Кэли о числе деревьев — названное в честь А. Кэли явное выражение в теории графов для числа деревьев с данным числом пронумерованных вершин. А именно, оказывается, что на n вершинах, пронумерованных числами от 1 до р, существует ровно рр? 2 различных деревьев.

Количество деревьев на n пронумерованных вершинах оказывается также равным числу разложений р-цикла (12…р) в произведение (р-1) транспозиции, а также числу (соответствующим образом нормированных) многочленов степени n с заданными (р-1) критическими значениями общего положения. Наконец, это последнее является частным случаем топологической классификации разветвлённых накрытий сферы Римана — тем самым, подсчёт числа деревьев оказывается частным случаем вычисления чисел Гурвица, соответствующим случаю накрывающей поверхности рода 0.

Доказательство. Пусть G (X, E) — дерево с p помеченными вершинами. Для простоты предположим, что вершины пронумерованы в произвольном порядке числами 1, 2, …, p. Рассмотрим способ, позволяющий однозначно закодировать дерево G.

В соответствии с теоремой 2 дерево G имеет концевые вершины. Пусть x1 — первая концевая вершина в последовательности 1, 2, …, p и пусть e1 = (x1, y1) — соответствующее концевое ребро. Удалим из дерева вершину x1 и ребро e1. Получим новое дерево G1 с числом вершин p — 1.

Найдем теперь первую концевую вершину x2 дерева G1 в последовательности вершин 1, 2, … …, p из множества {1, 2, …, p }{x1}, далее возьмем концевое ребро e2 = (x2, y2) и удалим из G1 x2 и e2. Эту процедуру последовательно повторяем. Через (p-2) шага остается дерево из двух вершин xp-1, yp-1 и одного ребра ep-1 = (xp-1, yp-1). Рассмотрим последовательность вершин:

(G) = {y1, y2, …, yp-2}.

Очевидно, что по данному дереву последовательность строится однозначно. Покажем теперь, что по данной последовательности вершин (G) дерево G можно восстановить однозначно. В последовательности 1, 2, …, p существуют вершины, не принадлежащие (G). Выберем первую из них x1 и построим ребро e1 = (x1, y1). Затем удалим x1 из последовательности 1, 2, …, n и y1 удалим из (G). Аналогичным образом построим ребро e2 = (x2, y2). Продолжая этот процесс, мы однозначно восстановим дерево G. Рассмотрим пример.

Табл. 1

Построение кода.

Восстановление.

(G).

(G) и список вершин.

Подсчет деревьев. Деревья как частный вид графов. Подсчет деревьев. Деревья как частный вид графов. Подсчет деревьев. Деревья как частный вид графов. Подсчет деревьев. Деревья как частный вид графов. Подсчет деревьев. Деревья как частный вид графов. Подсчет деревьев. Деревья как частный вид графов.

Рассмотренный пример позволяет отметить следующие две особенности:

  • 1. В списке (G) вершины могут повторяться.
  • 2. При восстановлении дерева последнее ребро соединяет вершину yp-2 и оставшуюся в списке 1, 2, …, p вершину не равную yp-2.

Итак, существует взаимно однозначное соответствие между множеством помеченных деревьев с p вершинами и множеством последовательностей вершин (G). Число таких последовательностей равно, очевидно, pp-2, что и требовалось доказать.

Отметим, что среди pp-2 помеченных деревьев с p вершинами могут быть и изоморфные.

Определение 3. Подграф G1(X1, E1) неориентированного графа G (X, E) называется каркасом, или остовным деревом графа G, если G1 — дерево и X = X1.

Теорема 4. Граф G (X, E) тогда и только тогда обладает каркасом, когда он связен.

Доказательство. Необходимость этого очевидна. Докажем достаточность. Пусть G (X, E) — связный граф. Выясним, есть ли в графе G такое ребро, удаление которого не нарушает связности графа G. Если таких ребер нет, то граф есть дерево в соответствии с теоремой 1. Если же такое ребро, например e, существует, то выбросим его и придем к графу G1(X, E{e}). Затем указанную процедуру проделываем с графом G1 и т. д. Через конечное число шагов будет построен, очевидно, каркас графа G. Теорема доказана.

Доказательство теоремы дает алгоритм построения некоторого каркаса в связном графе. Однако связный граф может иметь несколько каркасов, поэтому естественно поставить задачу выбора каркаса, удовлетворяющего дополнительным условиям.

Определение 4. Графом с нагруженными ребрами (нагруженным графом) называется неориентированный граф G (X, E), каждому ребру e? E которого поставлено в соответствие число (e) 0, называемое весом или длиной ребра e.

Аналогично можно определить нагруженный орграф.

Поставим задачу нахождения такого каркаса G1(X, E1) в нагруженном графе G (X, E), для которого сумма:

Подсчет деревьев. Деревья как частный вид графов.

минимальна. Каркас с таким свойством называется минимальным каркасом. В соответствии с теоремой 4 каждый нагруженный связный граф обладает минимальным каркасом. Эта задача возникает при проектировании линий связи и электропередач, дорог, трубопроводов и т. п., когда требуется соединить системой каналов связи заданные узлы так, чтобы любые два узла были связаны (возможно, через другие узлы), а общая длина каналов связи была минимальной; при этом узлы можно считать вершинами нагруженного графа, весам ребер которого соответствует длина возможного канала связи между соответствующими узлами. Тогда искомая сеть каналов будет минимальным каркасом этого графа.

Показать весь текст
Заполнить форму текущей работой