Корпускулярно-волновой дуализм.
Эволюции живого и неживого действительного окружающего мира Вселенной
Н. Бор сформулировал принцип дополнительности следующим образом: «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего». Противоре-чия корпускулярно-волновых свойств микрообъектов — это результат неконтролируемого взаимодействия микрочастиц с приборами: в одних приборах квантовые объекты ведут себя как волны… Читать ещё >
Корпускулярно-волновой дуализм. Эволюции живого и неживого действительного окружающего мира Вселенной (реферат, курсовая, диплом, контрольная)
Фундаментальные открытия в области физики конца XIX — начала ХХ вв. обнаружили, что физическая реальность едина и обладает как волновыми свойствами, так и корпускулярными. Исследуя тепловое излучение, М. Планк пришел к выводу, что в процессах излучения энергия отдается не в любых количествах и непрерывно, а лишь определенными порциями — квантами.
Квант — мельчайшая постоянная порция излучения.
Эйнштейн распространил гипотезу Планка о тепловом излучении на излучение вообще и обосновал новое учение о свете — фотонную теорию. Структура света является корпускулярной. Световая энергия концентрируется в определенных местах, и поэтому свет имеет прерывистую структуру — поток световых квантов, т. е. фотонов. Фотон — особая частица (корпускула). Фотон — квант энергии видимого и невидимого света, рентгеновского и гамма-излучений, обладающий одновременно свойствами частицы и волны, не имеющий массы покоя, имеющий скорость света, при определенных условиях порождает пару позитрон+электрон. Эта теория Эйнштейна объясняла явление фотоэлектрического эффекта — выбивание из вещества электронов под действием электромагнитных волн. Наличие фотоэффекта определяется частотой волны, а не ее интенсивностью. За создание фотонной теории А. Эйнштейн получил в 1922 году Нобелевскую премию. Эта теория была экспериментально подтверждена через 10 лет американским физиком Р. Э. Милликеном.
Парадокс: свет ведет себя и как волна, и как поток частиц. Волновые свойства проявляются при дифракции и интерференции, корпускулярные — при фотоэффекте.
Н. Бор сформулировал принцип дополнительности следующим образом: «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего». Противоре-чия корпускулярно-волновых свойств микрообъектов — это результат неконтролируемого взаимодействия микрочастиц с приборами: в одних приборах квантовые объекты ведут себя как волны, в других — как частицы. Из-за соотноше-ния неопределенностей корпускулярная и волновая модели описания кванто-вого объекта не противоречат друг другу, т.к. никогда не предстают одновре-менно. Таким образом, в зависимости от эксперимента объект показывает либо свою корпускулярную природу, либо волновую, но не обе сразу. Дополняя друг друга, обе модели микромира позволяют получить его общую картину.