Π—Π°ΠΊΠ°Π·Π°Ρ‚ΡŒ курсовыС, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹...
ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° Π·Π°ΠΊΠ°Π·. НСдорого!

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ коммивояТСра Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π‘ ΡΡ‚ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ для всСх ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌΠΈ элСмСнтами замСняСм ΠΏΠΎΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎ Π½ΡƒΠ»ΠΈ Π½Π° М (Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ) ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ для Π½ΠΈΡ… сумму ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ констант привСдСния, ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ…. (Π’Π°Π±Π»ΠΈΡ†Π° 9). Π‘ ΡΡ‚ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ для всСх ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌΠΈ элСмСнтами замСняСм ΠΏΠΎΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎ Π½ΡƒΠ»ΠΈ Π½Π° М (Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ) ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ для Π½ΠΈΡ… сумму ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ констант привСдСния, ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ…… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ коммивояТСра Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

РСшСниС Π·Π°Π΄Π°Ρ‡ΠΈ коммивояТСра ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΈ Π³Ρ€Π°Π½ΠΈΡ†

Π€ΠΈΡ€ΠΌΠ° ΠΏΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡ‚Π²Ρƒ Π½ΠΎΠ²ΠΎΠ³ΠΎΠ΄Π½ΠΈΡ… ΠΈΠ³Ρ€ΡƒΡˆΠ΅ΠΊ Π΄ΠΎΠ»ΠΆΠ½Π° Π΄ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π·Π°ΠΊΠ°Π· Π² 6 Π³ΠΎΡ€ΠΎΠ΄ΠΎΠ²: ΠšΠΈΡ€ΡΠ°Π½ΠΎΠ² (1); ΠšΠΎΡ‚ΠΎΠ²ΡΠΊ (2); Рассказово (3); ΠœΠΈΡ‡ΡƒΡ€ΠΈΠ½ΡΠΊ (4) ИнТавино (5); Π£Π²Π°Ρ€ΠΎΠ²ΠΎ (6). НуТно Π½Π°ΠΉΡ‚ΠΈ ΠΊΡ€ΠΎΡ‚Ρ‡Π°ΠΉΡˆΠΈΠΉ ΠΏΡƒΡ‚ΡŒ, объСздив всС Π³ΠΎΡ€ΠΎΠ΄Π° Ρ‚ΠΎΡ‡Π½ΠΎ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ Ρ€Π°Π·Ρƒ ΠΈ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒΡΡ Π² ΠΈΡΡ…ΠΎΠ΄Π½Ρ‹ΠΉ с ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠΌ Π·Π°Ρ‚Ρ€Π°Ρ‚. Π˜ΡΡ…ΠΎΠ΄Π½Ρ‹ΠΉ Π³ΠΎΡ€ΠΎΠ΄ 1.

Расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΎΡ€ΠΎΠ΄Π°ΠΌΠΈ Π·Π°Π΄Π°Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ. (Π’Π°Π±Π»ΠΈΡ†Π° 1).

Π’Π°Π±Π»ΠΈΡ†Π° 1.

Π˜ΡΡ…ΠΎΠ΄Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 66.

i j.

M.

M.

M.

M.

M.

M.

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ модСль:

Для опрСдСлСния Π½ΠΈΠΆΠ½Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ мноТСства Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΈΠ»ΠΈ привСдСния ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠΏΠΎ ΡΡ‚Ρ€ΠΎΠΊΠ°ΠΌ, для Ρ‡Π΅Π³ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ строкС ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Π‘ Π½Π°ΠΉΡ‚ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ элСмСнт: di = min (j) dij. (Π’Π°Π±Π»ΠΈΡ†Π° 2).

Π’Π°Π±Π»ΠΈΡ†Π° 2.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠΏΠΎ ΡΡ‚Ρ€ΠΎΠΊΠ°ΠΌ, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 66.

i j.

di

M.

M.

M.

M.

M.

M.

Π—Π°Ρ‚Π΅ΠΌ Π²Ρ‹Ρ‡ΠΈΡ‚Π°Π΅ΠΌ di ΠΈΠ· ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² рассматриваСмой строки. Π’ΠΎ Π²Π½ΠΎΠ²ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ строкС Π±ΡƒΠ΄Π΅Ρ‚ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ ΠΎΠ΄ΠΈΠ½ ноль. (Π’Π°Π±Π»ΠΈΡ†Π° 3).

Π’Π°Π±Π»ΠΈΡ†Π° 3.

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов рассматриваСмой строки, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 66.

i j.

M.

M.

M.

M.

M.

M.

Π’Π°ΠΊΡƒΡŽ ΠΆΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΡŽ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎ ΡΡ‚ΠΎΠ»Π±Ρ†Π°ΠΌ, для Ρ‡Π΅Π³ΠΎ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ столбцС Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ элСмСнт: dj = min (i) dij. (Π’Π°Π±Π»ΠΈΡ†Π° 4).

Π’Π°Π±Π»ΠΈΡ†Π° 4.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠΏΠΎ ΡΡ‚ΠΎΠ»Π±Ρ†Π°ΠΌ, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 66.

i j.

M.

M.

M.

M.

M.

M.

dj

ПослС вычитания ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π΅Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ, Π³Π΄Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ di ΠΈ dj Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ константами привСдСния. (Π’Π°Π±Π»ΠΈΡ†Π° 5).

Π’Π°Π±Π»ΠΈΡ†Π° 5.

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычитания ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов рассматриваСмого столбца, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 66.

i j.

M.

M.

M.

M.

M.

M.

Π‘ΡƒΠΌΠΌΠ° констант привСдСния опрСдСляСт ниТнюю Π³Ρ€Π°Π½ΠΈΡ†Ρƒ H: H = ?di + ?dj

H = 1+1+2+1+1+1+0+0+1+0+0+0 = 8.

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ dij ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ ΠΏΡƒΠ½ΠΊΡ‚Π° i Π΄ΠΎ ΠΏΡƒΠ½ΠΊΡ‚Π° j. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π² ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ n Π³ΠΎΡ€ΠΎΠ΄ΠΎΠ², Ρ‚ΠΎ Π‘ ΡΠ²Π»ΡΠ΅Ρ‚ся ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ nxn с Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ элСмСнтами dij >=0.

ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ допустимый ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ прСдставляСт собой Ρ†ΠΈΠΊΠ», ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ коммивояТСр посСщаСт Π³ΠΎΡ€ΠΎΠ΄ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Ρ€Π°Π· ΠΈ Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ся Π² ΠΈΡΡ…ΠΎΠ΄Π½Ρ‹ΠΉ Π³ΠΎΡ€ΠΎΠ΄.

Π”Π»ΠΈΠ½Π° ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚Π° опрСдСляСтся Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ: F (Mk) = ?dij

ΠŸΡ€ΠΈΡ‡Π΅ΠΌ каТдая строка ΠΈ ΡΡ‚ΠΎΠ»Π±Π΅Ρ† входят Π² ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Ρ€Π°Π· с ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠΌ dij.

Π¨Π°Π³ № 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ Ρ€Π΅Π±Ρ€ΠΎ вСтвлСния ΠΈ Ρ€Π°Π·ΠΎΠ±ΡŒΠ΅ΠΌ всС мноТСство ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ΠΎΠ² ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ этого Ρ€Π΅Π±Ρ€Π° Π½Π° Π΄Π²Π° подмноТСства (i, j) ΠΈ (i*, j*).

Π‘ ΡΡ‚ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ для всСх ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌΠΈ элСмСнтами замСняСм ΠΏΠΎΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎ Π½ΡƒΠ»ΠΈ Π½Π° М (Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ) ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ для Π½ΠΈΡ… сумму ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ констант привСдСния, ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ…. (Π’Π°Π±Π»ΠΈΡ†Π° 6).

Π’Π°Π±Π»ΠΈΡ†Π° 6.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° вСтвлСния, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 66.

i j.

di

M.

0(1).

0(1).

M.

0(0).

M.

0(2).

M.

0(1).

0(4).

M.

0(0).

0(1).

0(0).

M.

dj

d (1,6) = 1 + 0 = 1; d (2,1) = 0 + 1 = 1; d (2,3) = 0 + 0 = 0; d (3,5) = 2 + 0 = 2; d (4,6) = 1 + 0 = 1; d (5,2) = 1 + 3 = 4; d (6,3) = 0 + 0 = 0; d (6,4) = 0 + 1 = 1; d (6,5) = 0 + 0 = 0;

Наибольшая сумма констант привСдСния Ρ€Π°Π²Π½Π° (1 + 3) = 4 для Ρ€Π΅Π±Ρ€Π° (5,2), ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, мноТСство разбиваСтся Π½Π° Π΄Π²Π° подмноТСства (5,2) ΠΈ (5*, 2*). НиТняя Π³Ρ€Π°Π½ΠΈΡ†Π° этого подмноТСства:

H (5*, 2*) = 8 + 4 = 12.

Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° (5,2) ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΡƒΡ‚Π΅ΠΌ Π·Π°ΠΌΠ΅Π½Ρ‹ элСмСнта d52 = 0 Π½Π° M, послС Ρ‡Π΅Π³ΠΎ осущСствляСм ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ расстояний для ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠ΅Π³ΠΎΡΡ подмноТСства (5*, 2*), Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ€Π΅Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ. (Π’Π°Π±Π»ΠΈΡ†Π° 7).

Π’Π°Π±Π»ΠΈΡ†Π° 7.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ расстояний для подмноТСства (5*, 2*), ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 66.

i j.

di

M.

M.

M.

M.

M.

M.

M.

dj

Π’ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° (5,2) проводится ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ всСх элСмСнтов 5-ΠΎΠΉ строки ΠΈ 2-Π³ΠΎ столбца, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ элСмСнт d25 замСняСм Π½Π° М, для ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ образования Π½Π΅Π³Π°ΠΌΠΈΠ»ΡŒΡ‚ΠΎΠ½ΠΎΠ²Π° Ρ†ΠΈΠΊΠ»Π°.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π΄Ρ€ΡƒΠ³ΡƒΡŽ ΡΠΎΠΊΡ€Π°Ρ‰Π΅Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ (5×5), которая ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ привСдСния.

Π‘ΡƒΠΌΠΌΠ° констант привСдСния сокращСнной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹:

?di + ?dj = 0.

ПослС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ привСдСния сокращСнная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π²ΠΈΠ΄: (Π’Π°Π±Π»ΠΈΡ†Π° 8).

Π’Π°Π±Π»ΠΈΡ†Π° 8.

Бокращённая ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 55.

i j.

di

M.

M.

M.

M.

M.

dj

НиТняя Π³Ρ€Π°Π½ΠΈΡ†Π° подмноТСства (5,2) Ρ€Π°Π²Π½Π°:

H (5,2) = 8 + 0 = 8? 12.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ниТняя Π³Ρ€Π°Π½ΠΈΡ†Π° этого подмноТСства (5,2) мСньшС, Ρ‡Π΅ΠΌ подмноТСства (5*, 2*), Ρ‚ΠΎ Ρ€Π΅Π±Ρ€ΠΎ (5,2) Π²ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ Π² ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ с Π½ΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Π΅ΠΉ H = 8.

Π¨Π°Π³ № 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ Ρ€Π΅Π±Ρ€ΠΎ вСтвлСния ΠΈ Ρ€Π°Π·ΠΎΠ±ΡŒΠ΅ΠΌ всС мноТСство ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ΠΎΠ² ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ этого Ρ€Π΅Π±Ρ€Π° Π½Π° Π΄Π²Π° подмноТСства (i, j) ΠΈ (i*, j*).

Π‘ ΡΡ‚ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ для всСх ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌΠΈ элСмСнтами замСняСм ΠΏΠΎΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎ Π½ΡƒΠ»ΠΈ Π½Π° М (Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ) ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ для Π½ΠΈΡ… сумму ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ констант привСдСния, ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ…. (Π’Π°Π±Π»ΠΈΡ†Π° 9).

Π’Π°Π±Π»ΠΈΡ†Π° 9.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° вСтвлСния (5,2), ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 55.

i j.

di

M.

0(1).

0(3).

0(0).

M.

M.

0(2).

M.

0(1).

0(0).

0(1).

0(0).

M.

dj

d (1,6) = 1 + 0 = 1; d (2,1) = 0 + 3 = 3; d (2,3) = 0 + 0 = 0; d (3,5) = 2 + 0 = 2; d (4,6) = 1 + 0 = 1; d (6,3) = 0 + 0 = 0; d (6,4) = 0 + 1 = 1; d (6,5) = 0 + 0 = 0;

Наибольшая сумма констант привСдСния Ρ€Π°Π²Π½Π° (0 + 3) = 3 для Ρ€Π΅Π±Ρ€Π° (2,1), ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, мноТСство разбиваСтся Π½Π° Π΄Π²Π° подмноТСства (2,1) ΠΈ (2*, 1*).

НиТняя Π³Ρ€Π°Π½ΠΈΡ†Π° Π³Π°ΠΌΠΈΠ»ΡŒΡ‚ΠΎΠ½ΠΎΠ²Ρ‹Ρ… Ρ†ΠΈΠΊΠ»ΠΎΠ² этого подмноТСства:

H (2*, 1*) = 8 + 3 = 11.

Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° (2,1) ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΡƒΡ‚Π΅ΠΌ Π·Π°ΠΌΠ΅Π½Ρ‹ элСмСнта d21 = 0 Π½Π° M, послС Ρ‡Π΅Π³ΠΎ осущСствляСм ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ расстояний для ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠ΅Π³ΠΎΡΡ подмноТСства (2*, 1*), Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ€Π΅Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ. (Π’Π°Π±Π»ΠΈΡ†Π° 10).

Π’Π°Π±Π»ΠΈΡ†Π° 10.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ расстояний для подмноТСства (2*, 1*) ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 55.

i j.

di

M.

M.

M.

M.

M.

M.

dj

Π’ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° (2,1) проводится ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ всСх элСмСнтов 2-ΠΎΠΉ строки ΠΈ 1-Π³ΠΎ столбца, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ элСмСнт d12 замСняСм Π½Π° М, для ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ образования Π½Π΅Π³Π°ΠΌΠΈΠ»ΡŒΡ‚ΠΎΠ½ΠΎΠ²Π° Ρ†ΠΈΠΊΠ»Π°.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π΄Ρ€ΡƒΠ³ΡƒΡŽ ΡΠΎΠΊΡ€Π°Ρ‰Π΅Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ (4×4), которая ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ привСдСния.

Π‘ΡƒΠΌΠΌΠ° констант привСдСния сокращСнной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹:

?di + ?dj = 0.

ПослС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ привСдСния сокращСнная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π²ΠΈΠ΄ (Π’Π°Π±Π»ΠΈΡ†Π° 11):

Π’Π°Π±Π»ΠΈΡ†Π° 11.

Бокращённая ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 44.

i j.

di

М.

M.

M.

M.

dj

НиТняя Π³Ρ€Π°Π½ΠΈΡ†Π° подмноТСства (2,1) Ρ€Π°Π²Π½Π°:

H (2,1) = 8 + 0 = 8? 11.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ ΠΏΠΎΠ΄Ρ†ΠΈΠΊΠ»Ρ‹, Π·Π°ΠΏΡ€Π΅Ρ‚ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρ‹: (1,5),.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ниТняя Π³Ρ€Π°Π½ΠΈΡ†Π° этого подмноТСства (2,1) мСньшС, Ρ‡Π΅ΠΌ подмноТСства (2*, 1*), Ρ‚ΠΎ Ρ€Π΅Π±Ρ€ΠΎ (2,1) Π²ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ Π² ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ с Π½ΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Π΅ΠΉ H = 8.

Π¨Π°Π³ № 3. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ Ρ€Π΅Π±Ρ€ΠΎ вСтвлСния ΠΈ Ρ€Π°Π·ΠΎΠ±ΡŒΠ΅ΠΌ всС мноТСство ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ΠΎΠ² ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ этого Ρ€Π΅Π±Ρ€Π° Π½Π° Π΄Π²Π° подмноТСства (i, j) ΠΈ (i*, j*).

Π‘ ΡΡ‚ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ для всСх ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌΠΈ элСмСнтами замСняСм ΠΏΠΎΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎ Π½ΡƒΠ»ΠΈ Π½Π° М (Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ) ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ для Π½ΠΈΡ… сумму ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ констант привСдСния, ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ…. (Π’Π°Π±Π»ΠΈΡ†Π° 12).

Π’Π°Π±Π»ΠΈΡ†Π° 12.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° вСтвлСния (2,1) ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 44.

i j.

di

M.

0(1).

M.

0(2).

M.

0(1).

0(2).

0(1).

0(0).

M.

dj

d (1,6) = 1 + 0 = 1; d (3,5) = 2 + 0 = 2; d (4,6) = 1 + 0 = 1; d (6,3) = 0 + 2 = 2; d (6,4) = 0 + 1 = 1; d (6,5) = 0 + 0 = 0;

Наибольшая сумма констант привСдСния Ρ€Π°Π²Π½Π° (0 + 2) = 2 для Ρ€Π΅Π±Ρ€Π° (6,3), ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, мноТСство разбиваСтся Π½Π° Π΄Π²Π° подмноТСства (6,3) ΠΈ (6*, 3*).

НиТняя Π³Ρ€Π°Π½ΠΈΡ†Π° Π³Π°ΠΌΠΈΠ»ΡŒΡ‚ΠΎΠ½ΠΎΠ²Ρ‹Ρ… Ρ†ΠΈΠΊΠ»ΠΎΠ² этого подмноТСства:

H (6*, 3*) = 8 + 2 = 10.

Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° (6,3) ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΡƒΡ‚Π΅ΠΌ Π·Π°ΠΌΠ΅Π½Ρ‹ элСмСнта d63 = 0 Π½Π° M, послС Ρ‡Π΅Π³ΠΎ осущСствляСм ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ расстояний для ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠ΅Π³ΠΎΡΡ подмноТСства (6*, 3*), Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ€Π΅Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ. (Π’Π°Π±Π»ΠΈΡ†Π° 13).

Π’Π°Π±Π»ΠΈΡ†Π° 13.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ расстояний для подмноТСства (6*, 3*), ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 44.

i j.

di

M.

M.

M.

M.

M.

dj

Π’ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° (6,3) проводится ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ всСх элСмСнтов 6-ΠΎΠΉ строки ΠΈ 3-Π³ΠΎ столбца, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ элСмСнт d36 замСняСм Π½Π° М, для ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ образования Π½Π΅Π³Π°ΠΌΠΈΠ»ΡŒΡ‚ΠΎΠ½ΠΎΠ²Π° Ρ†ΠΈΠΊΠ»Π°.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π΄Ρ€ΡƒΠ³ΡƒΡŽ ΡΠΎΠΊΡ€Π°Ρ‰Π΅Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ (3×3), которая ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ привСдСния.

Π‘ΡƒΠΌΠΌΠ° констант привСдСния сокращСнной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹:

?di + ?dj = 1.

ПослС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ привСдСния сокращСнная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π²ΠΈΠ΄: (Π’Π°Π±Π»ΠΈΡ†Π° 14).

Π’Π°Π±Π»ΠΈΡ†Π° 14.

Бокращённая ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 33.

i j.

di

M.

M.

M.

dj

М.

НиТняя Π³Ρ€Π°Π½ΠΈΡ†Π° подмноТСства (6,3) Ρ€Π°Π²Π½Π°:

H (6,3) = 8 + 1 = 9? 10.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ ΠΏΠΎΠ΄Ρ†ΠΈΠΊΠ»Ρ‹, Π·Π°ΠΏΡ€Π΅Ρ‚ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρ‹: (1,5),.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ниТняя Π³Ρ€Π°Π½ΠΈΡ†Π° этого подмноТСства (6,3) мСньшС, Ρ‡Π΅ΠΌ подмноТСства (6*, 3*), Ρ‚ΠΎ Ρ€Π΅Π±Ρ€ΠΎ (6,3) Π²ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ Π² ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ с Π½ΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Π΅ΠΉ H = 9.

Π¨Π°Π³ № 4. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ Ρ€Π΅Π±Ρ€ΠΎ вСтвлСния ΠΈ Ρ€Π°Π·ΠΎΠ±ΡŒΠ΅ΠΌ всС мноТСство ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ΠΎΠ² ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ этого Ρ€Π΅Π±Ρ€Π° Π½Π° Π΄Π²Π° подмноТСства (i, j) ΠΈ (i*, j*).

Π‘ ΡΡ‚ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ для всСх ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌΠΈ элСмСнтами замСняСм ΠΏΠΎΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎ Π½ΡƒΠ»ΠΈ Π½Π° М (Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ) ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ для Π½ΠΈΡ… сумму ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ констант привСдСния, ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ…. (Π’Π°Π±Π»ΠΈΡ†Π° 15).

Π’Π°Π±Π»ΠΈΡ†Π° 15.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° вСтвлСния (6,3) ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 33.

i j.

di

0(1).

M.

0(0).

0(2).

M.

M.

0(1).

dj

М.

d (1,4) = 0 + 1 = 1; d (1,6) = 0 + 0 = 0; d (3,5) = 1 + 1 = 2; d (4,6) = 1 + 0 = 1;

Наибольшая сумма констант привСдСния Ρ€Π°Π²Π½Π° (1 + 1) = 2 для Ρ€Π΅Π±Ρ€Π° (3,5), ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, мноТСство разбиваСтся Π½Π° Π΄Π²Π° подмноТСства (3,5) ΠΈ (3*, 5*).

НиТняя Π³Ρ€Π°Π½ΠΈΡ†Π° Π³Π°ΠΌΠΈΠ»ΡŒΡ‚ΠΎΠ½ΠΎΠ²Ρ‹Ρ… Ρ†ΠΈΠΊΠ»ΠΎΠ² этого подмноТСства:

H (3*, 5*) = 9 + 2 = 11.

Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° (3,5) ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΡƒΡ‚Π΅ΠΌ Π·Π°ΠΌΠ΅Π½Ρ‹ элСмСнта d35 = 0 Π½Π° M, послС Ρ‡Π΅Π³ΠΎ осущСствляСм ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ расстояний для ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠ΅Π³ΠΎΡΡ подмноТСства (3*, 5*), Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ€Π΅Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ. (Π’Π°Π±Π»ΠΈΡ†Π° 16).

Π’Π°Π±Π»ΠΈΡ†Π° 16.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ расстояний для подмноТСства (3*, 5*) ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 33.

i j.

di

M.

M.

M.

dj

Π’ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° (3,5) проводится ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ всСх элСмСнтов 3-ΠΎΠΉ строки ΠΈ 5-Π³ΠΎ столбца, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ элСмСнт d53 замСняСм Π½Π° М, для ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ образования Π½Π΅Π³Π°ΠΌΠΈΠ»ΡŒΡ‚ΠΎΠ½ΠΎΠ²Π° Ρ†ΠΈΠΊΠ»Π°.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π΄Ρ€ΡƒΠ³ΡƒΡŽ ΡΠΎΠΊΡ€Π°Ρ‰Π΅Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ (2×2), которая ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ привСдСния.

Π‘ΡƒΠΌΠΌΠ° констант привСдСния сокращСнной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹:

?di + ?dj = 0.

ПослС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ привСдСния сокращСнная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π²ΠΈΠ΄: (Π’Π°Π±Π»ΠΈΡ†Π° 17).

Π’Π°Π±Π»ΠΈΡ†Π° 17.

Бокращённая ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ 22.

i j.

di

М.

M.

dj

НиТняя Π³Ρ€Π°Π½ΠΈΡ†Π° подмноТСства (3,5) Ρ€Π°Π²Π½Π°:

H (3,5) = 9 + 0 = 9? 11.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ниТняя Π³Ρ€Π°Π½ΠΈΡ†Π° этого подмноТСства (3,5) мСньшС, Ρ‡Π΅ΠΌ подмноТСства (3*, 5*), Ρ‚ΠΎ Ρ€Π΅Π±Ρ€ΠΎ (3,5) Π²ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ Π² ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ с Π½ΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Π΅ΠΉ H = 9.

Π’ ΡΠΎΠΎΡ‚вСтствии с ΡΡ‚ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ Π² Π³Π°ΠΌΠΈΠ»ΡŒΡ‚ΠΎΠ½ΠΎΠ² ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ Ρ€Π΅Π±Ρ€Π° (1,4) ΠΈ (4,6).

Cmin = 2+1+2+2+1+1=9.

ΠŸΡƒΡ‚ΡŒ: (1,4); (4,6); (6;3); (3,5); (5,2); (2,1).

1>4>6>3>5>2>1.

ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ Π”Π΅Ρ€Π΅Π²ΠΎ Π²Π΅Ρ‚Π²Π»Π΅Π½ΠΈΠΉ (ΠŸΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ А).

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ