Заказать курсовые, контрольные, рефераты...
Образовательные работы на заказ. Недорого!

Триггеры. 
Шифраторы, дешифраторы, триггеры

РефератПомощь в написанииУзнать стоимостьмоей работы

Рассмотрим работу триггера рисунка 2−5а. Допустим, что триггер находится в состоянии 0, то есть Q'=Q=0, и на вход Т поступает сигнал (высокий потенциал). Этот сигнал возбуждает нейрон Нм через синапс с весом +1, а нейрон Нs остаётся в невозбуждённом состоянии, поскольку в нём до переключения Нм возбуждены два синапса с весами +1 и — 2 и суммарная активность, а после переключения Нм возбуждены все… Читать ещё >

Триггеры. Шифраторы, дешифраторы, триггеры (реферат, курсовая, диплом, контрольная)

Существуют различные типы триггеров на потенциальных элементах: RS-триггеры (синхронные и асинхронные), D-триггеры типов Latche и Edge, RST-, D-, и JK-триггеры типа ведущий-ведомый (Master-Slave) и так далее. Рассмотрим примеры построения таких триггеров на НЛЭ (нейронные логические элементы).

Функцию асинхронного RS-триггера аналитически можно описать следующим образом:

(2−1),.

где, если, и p=0, если. Допустим, что в рассматриваемом триггере комбинация сигналов R=1, S=1 является запрещённой, то есть. Тогда, обозначая R?x1 S?x2, Q (t) ?x3, Q (t+1) =F, получим:

Триггеры. Шифраторы, дешифраторы, триггеры.

(2−2).

Изображая эту функцию в виде точечной диаграммы, а затем преобразуя её в пороговую диаграмму и синтезируя ФНО по алгоритму синтеза ФН, получим простейшую схему RS-триггера, показанную на рисунке 2−1а. Нетрудно проверить, что при отсутствии сигналов R и S (R=S=0) единичное состояние триггера, то есть возбуждённое состояние нейрона, устойчиво благодаря обратной связи с прямого выхода. Нулевое состояние триггера также устойчиво, так как оно соответствует невозбуждённому состоянию нейрона. При поступлении сигнала R=1 или S=1 состояние нейрона, следовательно, состояние триггера изменяется.

По функции (2−2) можно синтезировать также другие варианты RS-триггера на ФНР, ФНЗ или ФНО, но они не проще данной схемы.

Допустим в триггере разрешается комбинация R=S=1, то есть p=1. Тогда из (2−1) будем иметь:

(2−3).

Пользуясь алгоритмом синтеза оптимального нейрона, получим простейший ФН, реализующий эту функцию, то есть схему RS-триггера, которая показана на рисунке 2−1б. Как видно, здесь вместо ФН получен ПЭ. Однако при технической реализации этот ПЭ требует больше компонентов (транзисторов и резисторов), чем ФН, показанный на рисунке 2−1а, так как ПЭ имеет три синаптических входа, а ФН — два (один синаптический вход требует четыре компонента). Элемент ИЛИ в ФН добавляет на синаптический вход всего один транзистор.

Если полученную согласно (2−3) точечную диаграмму подвергать преобразованию типа Px1x1 — то получим новую точечную диаграмму, по которой, синтезируя минимальный нейрон, получим схему RS-триггера, показанную на рисунке 2−1 В. Как видно, здесь уже требуется один МЭ «2 или более из 3». В этой схеме вход R работает по негативной логике, то есть логической единице соответствует низкий потенциал.

Работу синхронного RS-триггера аналитически можно представить следующей системой функций:

Триггеры. Шифраторы, дешифраторы, триггеры.

(2−4).

где логическая переменная С соответствует синхроимпульсу. Каждая из этих формул представляет функцию трёх переменных и выражается соответствующей точечной диаграммой.

Синтезируя ФН, реализующие эти функции, получим два идентичных ПЭ с весами +1, +1, +2 и порогом +2. Оба эти ПЭ имеют общую входную переменную С, а по другим аргументам отличаются. Соединяя эти два ПЭ в соответствии с (2−4), получим схему синхронного RS-триггера, показанную на рисунке 2−2б. Если по функции (2−5) синтезировать ФНО, то получается нейрон с аналогичной структурой и другой полярностью синхроимпульса. Здесь и далее принимается, что вход (синапс) НЛЭ возбуждён, если на него подан высокий уровень потенциала.

Простые RSD-триггеры (защёлки).

Рис. 2-3. Простые RSD-триггеры (защёлки)

На рисунке 2−3 приведены схемы простых D-триггеров с R и S входами на ПЭ и ФН. Схемы построены таким образом, что в них полностью отсутствует соревнование (гонка) сигналов. В схемах входы R и S работают по асинхронному принципу, а информационный сигнал D записывается в триггер только при поступлении синхроимпульса. В схеме рисунка 2−3а, вход R работает по негативной логике, т. е. в нормальных условиях при отсутствии сигнала Уст.0 на входе R имеется высокий уровень потенциала. Здесь используются как прямые, так и инверсные значения синхроимпульсов. В схеме рисунка 2−3б, прямым выходом триггера служит инверсный выход нейрона. Наиболее простой с точки зрения технической реализации является схема рисунка 2−3б.

Рассмотрим работу схемы рисунка 2−3б. При отсутствии входных сигналов схема может находиться в одном из двух устойчивых состояний — нейрон возбуждён (Q=0) и не возбуждён (Q=1). При Q=0, благодаря обратной связи, суммарная активность (у) синапсов равна +2 или +1 в зависимости от того, что имеется на информационном входе D. Поскольку, то в обоих случаях состояние схемы устойчивое.

Счётный триггер на МЭ.

Рис. 2-4. Счётный триггер на МЭ

Допустим Q=1, D=0б то есть нейрон не возбуждён и на информационном входе имеется низкий потенциал. При поступлении синхроимпульса в нейроне возбуждаются два синапса с весами +2 и — 1. Поскольку, то нейрон возбуждается и обратная связь поддерживает это состояние после снятия синхроимпульса. Таким образом, с поступлением синхроимпульса (С) в триггер записывается информация 0, имеющая на входе D. Если к моменту поступления следующего синхроимпульса информация на входе D не изменяется, то состояние 0 триггера также не изменится. Допустим теперь информация на входе сменилась (D=1). Тогда, поскольку С отсутствует, состояние триггера не изменяется, так как в нейроне снова возбуждены два синапса с весами — 1 и +2 и. При поступлении С в нейроне оказываются возбуждёнными все три синапса и, поскольку, нейрон переходит в невозбуждённое состояние, то есть триггер переключается на 1. В других случаях схема работает аналогичным образом.

В этой схеме, если на информационный вход триггера подавать сигнал и поменять местами выходы, получится D-триггер, информационный вход которого работает по негативной логике.

Рассмотрим триггеры со счётными входами, или так называемые Т-триггеры. В простейшем случае Т-триггер можно построить на двух RS-триггерах типа рисунка 2−2а, с добавлением некоторых входов или вентилей, как это делается обычно при построении Т-триггера на булевых элементах. Однако при этом потребуются 4−6 элементов, то есть схема получается сложной.

На рисунке 2−4 показана схема счётного триггера, построенная на трёх мажоритарных элементах. Для работы в счётном режиме на управляющие входы y1 и y2 подаётся постоянно высокий уровень потенциала 1. При каждом поступлении счётного сигнала Т выход Q-триггера переключается в противоположное состояние, причём рабочим перепадом является отрицательный перепад счётного сигнала, то есть триггер работает по принципу Master-Slave, МЭ1 и МЭ2 образуют ведущий триггер, а МЭ3-ведомый. На рисунке 2−4 справа показана временная диаграмма работы триггера. Максимальная частота переключения этого триггера в счётном режиме равна:

Триггеры. Шифраторы, дешифраторы, триггеры.

.

где ф-задержка одного элемента.

T-триггеры типа MS на ФН.

Рис. 2-5. T-триггеры типа MS на ФН

На рисунке 2−5 приведены схемы Т — и RST-триггеров, построенных на двух ФНР и ФНО соответственно. Обе схемы работают согласно временной диаграмме, приведённой на рисунке 2−5 внизу. Верхний нейрон Нм реагирует на положительный перепад счётного сигнала и называется ведущим (Master) элементом, а нижний нейрон Нs реагирует на отрицательный перепад счётного сигнала и называется ведомым (Slave) элементом. Ведомый нейрон Нs напоминает предыдущее состояние триггера на время, равное длительности запускающего сигнала. Это свойство схемы в некоторый момент времени содержать в себе информацию как о текущем, так и о предыдущем состоянии — очень важно. Как будет показано далее, оно широко используется при построении логических устройств на таких триггерах.

Рассмотрим работу триггера рисунка 2−5а. Допустим, что триггер находится в состоянии 0, то есть Q'=Q=0, и на вход Т поступает сигнал (высокий потенциал). Этот сигнал возбуждает нейрон Нм через синапс с весом +1, а нейрон Нs остаётся в невозбуждённом состоянии, поскольку в нём до переключения Нм возбуждены два синапса с весами +1 и — 2 и суммарная активность, а после переключения Нм возбуждены все три синапса с весами +1 и — 2 и суммарная активность. Таким образом, пока на входе Т стоит высокий потенциал, Нм находится в возбуждённом состоянии, а Нs — в невозбуждённом. После снятия сигнала на входе Т (подан низкий потенциал) нейрон Нs также переходит в возбуждённое состояние благодаря синапсу, связанному с выходом Q', а нейрон Нм не изменяет своего состояния. Следовательно, за один период входного сигнала триггер переключается полностью из состояния 0 в состояние 1. Обратное переключение из состояния 1 в состояние 0 происходит аналогичным образом.

Триггеры. Шифраторы, дешифраторы, триггеры.

Максимальное быстродействие триггера на рисунке 2−5 в счётном режиме равно:. Для установки триггера в состояние 0 или 1 достаточно на соответствующий вход подать положительный импульс с длительностью, то есть R — и S — входы триггера работают по асинхронному принципу.

D-триггер типа MS с парафазным входом.

Рис. 2-6. D-триггер типа MS с парафазным входом

На рисунке 2−6 показан ведущий-ведомый (Master-Slave) D-триггер (далее будем называть MSD-триггером) с пара фазным входом и временная диаграмма его работы. При поступлении синхроимпульса его положительный перепад записывает информацию D в ведущем нейроне Нм, при этом состояние ведомого нейрона остаётся прежним. Отрицательный перепад синхроимпульса, состояние ведущего нейрона записывает в ведомом нейроне Нs. Как видно, информация на выходе этого триггера появляется с задержкой, равной длительности синхроимпульса. Поэтому этот триггер иногда называют также задержанным D-триггером в отличие от простого D-триггера.

Как известно, универсальным типом триггера является JK-триггер, который может работать как в режиме синхронного RS-триггера, так и в режиме Т-триггера и MSD-триггера. Рассмотренный на рисунке 2−4 Т-триггер можно превратить в JK-триггер, если на управляющие входы y1 и y2 подать сигналы J и K соответственно, а на вход Т подать синхроимпульсы. Если же на вход у1 подать сигнал D, а на вход y2 — сигнал, то этот триггер превратится в MSD-триггер с парафазным входом.

JK-триггер типа MS на ФНО.

Рис. 2-7. JK-триггер типа MS на ФНО

На рисунке 2−7 приведена схема JK-триггера на ИЛИ — нейронах. Хотя в схеме используются прямое и инверсное значения тактирующего сигнала, но соревнование (гонка) сигналов полностью отсутствует. При J=K=1 тактирующий сигнал не влияет на триггер. Если J=K=0 или эти входы объединены с входом, то триггер работает в счётном режиме, то есть превращается в Т-триггер. В остальных случаях тактирующий сигнал записывает входную информацию в триггер, причём снова верхний нейрон является ведущим, а нижний — ведомым.

Рассмотрим работу приведённого JK-триггера. В исходном состоянии отсутствует тактирующий сигнал, то есть C=0, а. При этом триггер может находиться либо в состоянии 0, либо в 1. Оба эти состояния триггера устойчивые. Действительно, допустим триггер находится в состоянии 0. Это означает, что Q=Q'=0. Нм не возбуждён, так как в нём возбуждены один положительный и один отрицательный входы, сумма весов которых меньше порога (+1). Следовательно, состояние Нм устойчивое. В Нs возбуждён отрицательный вход, связанный с. Поэтому состояние Нs также устойчивое.

Аналогичным образом устойчиво также единичное состояние триггера, когда Q=Q'=1, благодаря обратным связям с прямых выходов нейронов к своим же положительным входам.

При отсутствии тактирующего сигнала (С=0) изменение информации на входах J и K не влияет на триггер. Допустим триггер находится в состоянии 0 и J=1, K=0. Пока С=0, то есть, сигнала J не действует на положительный вход Нм, связанный с элементом ИЛИ, остаётся возбуждённым, так как J=1, а тормозящий вход гасится, так как К=0. В результате Нм возбуждается, то есть Q'=1. Этот сигнал не может возбуждать Нs пока С=1. При снятии тактирующего сигнала высокий потенциал выхода Q' поддерживает Нм в возбуждённом состоянии и одновременно возбуждает Нs, то есть получается Q=1.

Таким образом, положительный перепад тактирующего сигнала переключает Нм, а отрицательный перепад — Hs. В итоге после одного тактирующего импульса триггер переключается из состояния 0 в состояние 1.

Вариант JK-триггера на ФНР.

Рис. 2-8. Вариант JK-триггера на ФНР

В этом состоянии, когда Q=1, J=1, K=0, при повторном поступлении тактирующего сигнала состояние Нм, следовательно, и состояние всего триггера не изменится, так как при С=1, оба входа Нм остаются возбуждёнными, причём положительный вход от сигнала J, отрицательный вход от сигнала Q.

При соединении входов J и K с входом или при подаче на входы J и K постоянного низкого потенциала (J=K=0) триггер изменяет своё состояние на противоположное при каждом поступлении тактирующего сигнала С, то есть превратиться в Т-триггер.

Работу описанного JK-триггера можно выразить следующим образом:

.

где Q (t) — состояние триггера в момент t.

Если на входы J и K триггера подавать инверсные значения сигналов, то триггер будет работать аналогичным образом. Для перехода в счётный режим необходимо на эти входы подавать сигнал 1 или объединить их со сходом С.

На рисунке 2−8 показан вариант JK-триггера, где используются однополярные тактирующие сигналы C и все выходы работают по позитивной логике.

Можно привести множество других вариантов триггеров, построенных на ПЭ и ФН различных типов.

Показать весь текст
Заполнить форму текущей работой