Заказать курсовые, контрольные, рефераты...
Образовательные работы на заказ. Недорого!

Сущность и значение фотосинтеза. 
Космическая роль растений

РефератПомощь в написанииУзнать стоимостьмоей работы

В молекуле кислорода, выделяемой при фотосинтезе у высших растений, содержится два атома О, а в молекуле воды — только один, а это значит, что в реакции должны участвовать две молекулы воды. Чтобы получить сбалансированное уравнение, которое бы правильно отражало механизм суммарной реакции, мы должны ввести в обе части этого уравнения еще по одной молекуле воды. Когда вода будет содержать 18О… Читать ещё >

Сущность и значение фотосинтеза. Космическая роль растений (реферат, курсовая, диплом, контрольная)

Синтезируемые в процессе фотосинтеза сахара почти сразу преобразуются в высокополимерные соединения — крахмал, накопленный в виде крахмальных зерен в хлоропластах и лейкопластах; одновременно часть сахаров выделяется из пластид и перемещается по растению в другие места. Сахар, преобразовавшийся в крахмал, тем самым на некоторое время выходит из дальнейших метаболических реакций; однако крахмал может вновь расщепляться до сахара, который окисляется и при этом обеспечивает клетку необходимой энергией Когда лучи соответствующей длины волны поглощаются хлоропластом, двуокись углерода химически восстанавливается до сахаров, а газоподобный кислород выделяется в объеме, равным восстановленному СО2. Эти изменения противоположны по направлению изменениям, которые происходят в процессе дыхания. Таким образом, важная роль растений в балансе природы связана и с тем, что они возвращают кислород в атмосферу, который необходим для других организмов.

Обозначивши формулой (СН2О) элементарную единицу молекулы углевода (молекула глюкозы С6Н12О6 построена из шести таких единиц), мы можем записать общее выражение фотосинтеза:

Суммарное уравнение фотосинтеза в свое время предложил Ж-Б. Буссенго. Этот процесс В. Пфеффер в 1887 году назвал фотосинтезом.

В 1842 году Ю. Майер сформулировал закон сохранения и преобразования энергии. Не забыл он и зеленые растения. Он писал, что природа поставила своей задачей перехватить приходящий на Землю свет и преобразовать эту подвижнейшую из сил в твердую форму, сложив ее в запас. Для достижения этой цели она покрыла земную кору растениями. Однако ученые того времени не обратили внимания на это высказывание.

Экспериментальное доказательство о том, что процесс фотосинтеза подчиняется закону сохранения и преобразования энергии сделал К. А. Тимирязев в 1867 г. Он показал, что интенсивней всего фотосинтез происходит в тех лучах, которые максимально поглощаются специальным пигментом — хлорофиллом. Поглощенная хлорофиллом энергия света дальше используется на образование органического вещества в растении и выделении О2.

Следовательно, фотосинтез — это процесс, связанный с накоплением света в растении, который собирается в органических веществах. Одновременно К. А. Тимирязев доказал ошибочность взглядов В. Пфеффера, Ю. Сакса и Г. Дрепера. Последние считали, что фотосинтез интенсивней всего идет в самых ярких для человеческого глаза желтых лучах, а не в тех, которые поглощаются хлорофиллом.

Таким образом, суммарное выражение фотосинтеза отражает суть процесса, который сводится к тому, что на свету в зеленом растении из очень окисленных веществ — углекислого газа и воды — синтезируются органические вещества и выделяется молекулярный О2. В ходе этого синтеза происходит преобразование лучистой энергии в энергию химических связей органических веществ.

Все компоненты системы, принимающие участие в фотосинтезе, содержат кислород, поэтому приведенное уравнение не говорит откуда берется выделяемый при фотосинтезе кислород: из СО2 или Н2О. На протяжении многих лет биологи считали, что световая энергия тратится на расщепление молекулы СО2 и перенос атома С на Н2О с образованием (СН2О). Однако наблюдение за фотосинтезирующими организмами пошатнули эти представления.

Биохимический путь у фотосинтезирующих микроорганизмах аналогичен соответствующим процессам у высших растений, но все же немного отличается от них. Так у бактерий имеется только одна пигментная система, а не две. Кроме того, бактерии отличаются от зеленых растений и по природе своих хлорофиллов. Они содержат бактериохлорофилл и (или) хлоробиумхлорофилл (chlorobium — хлорофилл). Фотосинтез у бактерий отличается и по природе световой стадии. У некоторых бактерий восстановитель образуется за счет части молекул АТФ, синтезируемых в световой фазе, при этом запускается обратный перенос электронов по дыхательной цепи (или по фотосинтетической цепи переноса электронов, в которой включены некоторые компоненты дыхательной цепи). У других бактерий восстановитель восстанавливается аналогично растениям, с той только разницей, что в качестве конечного источника электронов используется не вода, а другие доноры электронов. Кроме того, фотосинтезирующие бактерии не выделяют О2 в качестве конечного продукта.

Например, фотосинтезирующие пурпурные бактерии используют при фотосинтезе не Н2О, а Н2S, и в качестве побочного продукта фотосинтеза, выделяют не кислород, а серу.

Во многих местах зеленого шара важным природным источником серы служат отложения серы, образовавшиеся именно таким путем. Как видно, эта сера может происходить только с Н2S, разлагаемого в процессе фотосинтеза. Аналогичным путем ведут себя некоторые водоросли, которых можно «приучить» использовать вместо воды газоподобный водород Н2 для восстановления СО2 до (СН2О), т. е. до уровня углевода:

Известно, что в обоих случаях световая энергия растрачивается на разложение (фотолиз) донора водорода, а восстановительная сила, генерируемая таким путем, используется для преобразования СО2 в (СН2О).

Фотосинтез происходит и в тех многочисленных организмах, которые хоть и содержат хлорофилл, но не имеют зеленого цвета, потому что их цвет определяется присутствием других пигментов, маскирующих хлорофилл, например, бурые или красные водоросли.

Если у разных организмов существует какой либо общий механизм, то приведенные данные позволяют предполагать, что у высших растений световая энергия расходуется на разложение воды. Убедится в том, что мысль верна смогли тогда, когда биохимики начали использовать для изучения фотосинтеза Н2О или СО2, меченные тяжелыми изотопами кислорода (18О). В этих опытах было показано, что выделяющийся О2 всегда соответствует по своему изотопному состоянию кислороду, который содержится в воде, а не, а СО2. Вообще, фотолиз воды — это ключ ко всему процессу фотосинтеза, так как на этом этапе световая энергия используется для выполнения химической работы.

В молекуле кислорода, выделяемой при фотосинтезе у высших растений, содержится два атома О, а в молекуле воды — только один, а это значит, что в реакции должны участвовать две молекулы воды. Чтобы получить сбалансированное уравнение, которое бы правильно отражало механизм суммарной реакции, мы должны ввести в обе части этого уравнения еще по одной молекуле воды. Когда вода будет содержать 18О, то мы получим Если мы пометили при помощи 18О СО2, тогда уравнение принимает следующий вид Выделяемый при фотосинтезе кислород образуется из вступающей в реакцию воды, образующиеся же молекулы воды, отличаются от тех двух молекул, которые принимают участие в фотосинтезе.

Световая энергия используется на разложение воды. При этом выделяется кислород и образуется «водород» (или восстановительная сила), которая тратится.

  • 1) на восстановление СО2 до конечного продукта фотосинтеза (СН2О).
  • 2) на образование новой молекулы воды.

Суммарное выражение фотосинтеза сыграло большую роль в развитии физиологии растений. Оно помогло ученым определить место фотосинтеза в жизни самих растений и существовании жизни на всей планете. Фотосинтез имеет большое значение и для самого растения. Образование органов, их рост тесно связаны с фотосинтезом. В периоды наиболее активного роста дневные приросты сухого вещества достигают от 100 до 500 кг на 1 га. При этом растение должно ассимилировать от 200 до 500 кг СО2, 1−2 кг азота, 0,25−0,5 кг фосфора, 2−4 кг калия, 2−4 кг других элементов и испарить до 1 000 л воды.

Лучистая энергия от солнца до Земли доходит в форме электромагнитных колебаний разной длинной волны. Около 40−45% излучаемой солнцем энергии приходится на область от 380 до 720 нм. Эта часть спектра воспринимается как видимый свет. Тут располагаются известные цвета: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный.

Пигменты хлоропластов поглощают видимый свет, поэтому эта область была названа физиологически активной радиацией (ФАР). К ФАР со стороны более коротких волн прилегает ультрафиолетовая радиация, а со стороны более длинных — инфракрасная. Инфракрасные лучи не принимают участия в фотосинтезе, но принимают участие в регулировании других процессов жизнедеятельности растений. Коротковолновая радиация (ультрафиолетовая, г-лучи, космические лучи), как показано, играют большую роль в мутагенезе растений, в изменении их наследственности.

Энергия, запасенная в процессе фотосинтеза за год, приблизительно в 100 раз больше энергии, образуемой при сгорании каменного угля, который добывается во всем мире за это время. Эта энергия используется для образования органического вещества из неорганического. Каждый год в процессе фотосинтеза растения образуют 155 млрд. т сухого органического вещества.

Органические вещества, которые используют люди, животные, сначала образуются в зеленом листе. Большая часть той энергии, которая используется человеком в различных областях производства — это энергия солнца, преобразованная в зеленом листе и запасенная в каменном угле, нефти, древесине.

Для образования такого большого количества органического вещества растения поглощают на протяжении года 200 млрд. т СО2 и выделяют 145 млрд. т кислорода. Весь кислород атмосферы образовался в процессе фотосинтеза. Таким образом, процессы дыхания и горения смогли произойти только после возникновения фотосинтезирующих организмов.

Содержание СО2 в атмосфере беспрестанно пополняется за счет растворенных в воде карбонатов, бикарбонатов, выделения из почвы, за счет дыхания и горения.

Изучение фотосинтеза и раскрытие его механизмов является одной из наиболее важных и интересных задач физиологии растений. Во-первых, детальное изучение синтеза органических веществ в зеленом растении — один из путей решения проблемы питания в мире. Так как 95% массы растения образуется в процессе фотосинтеза, то необходима теоретическая основа для увеличения урожая. Во-вторых, детальное изучение химизма фотосинтеза и строения фотосинтетического аппарата на молекулярном уровне открывают путь для моделирования фотосинтеза, и организации производства органических веществ в искусственных условиях. В-третьих, изучение процесса разложения воды зелеными растениями с помощью света и моделирование этого процесса в искусственных условиях позволит человечеству получать водород и использовать его в качестве экологически чистого топлива, что поможет решить энергетическую проблему.

Особая роль в этом отношении принадлежит зеленым растениям, роль, которую К. А. Тимирязев назвал Космической. Она заключается в том, что «зеленое зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия солнца, а с другого берут начало все проявления жизни на Земле».

Ежегодно на Землю поступает огромное количество энергии солнца (1,26- 1024 кал), 42% которой отражается в мировое пространство. Используя часть энергии солнечных лучей, зеленые растения утилизируют углекислый газ воздуха в качестве источника углерода в процессе синтеза органических веществ. Но зеленое растение не только получает для себя пищу из неорганической природы, оно, по словам Тимирязева, является посредником между небом и Землей. Энергия, полу­ченная от солнечного луча, аккумулируется в растении и в этом виде вместе с накопленным в его теле органическим веществом поступает в организм других растений или животных, питающихся растительной пищей. Последние в свою очередь служат пищей для других гетеротрофных организмов.

Выделяемый в процессе фотосинтеза кислород оказывается необходимым для жизни всех аэробных организмов, которые в процессе дыхания поглощают его из воздуха, одновременно выделяя углекислый газ. Такое постоянное поступление углекислого газа в атмосферу имеет колоссальное значение в круговороте веществ. По приблизительным подсчетам, растительный покров земного шара ежегодно ассимилирует из углекислого газа свыше 140 млрд. т углерода, что примерно составляет 3 г на гектар. Всего в атмосфере содержится около двух тысяч биллионов килограммов углекислого газа, которого не хватило бы и на100 лет, если бы он не поступал в атмосферу и гидросферу в процессе жизнедеятельности организмов.

Показать весь текст
Заполнить форму текущей работой