Π—Π°ΠΊΠ°Π·Π°Ρ‚ΡŒ курсовыС, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹...
ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° Π·Π°ΠΊΠ°Π·. НСдорого!

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ уравнСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ постоянного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π’Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈΠ· Π·Π°ΠΊΠΎΠ½Π° ΠšΡƒΠ»ΠΎΠ½Π° ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° супСрпозиции ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ уравнСния, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ постоянноС элСктричСскоС ΠΏΠΎΠ»Π΅, ΠΈΠ· Π·Π°ΠΊΠΎΠ½Π° Π‘ΠΈΠΎ — Π‘Π°Π²Π°Ρ€Π° — Лапласа (6.1) ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° супСрпозиции (6.4) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ уравнСния для Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ уравнСниям (6.9) ΠΈ (6.11) ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰Π΅Π΅ условиям (6.9) ΠΈΠ»ΠΈ (6.12), Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²ΠΈΡ…Ρ€Π΅Π²Ρ‹ΠΌ, ΠΈΠ»ΠΈ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ уравнСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ постоянного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π’Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈΠ· Π·Π°ΠΊΠΎΠ½Π° ΠšΡƒΠ»ΠΎΠ½Π° ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° супСрпозиции ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ уравнСния, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ постоянноС элСктричСскоС ΠΏΠΎΠ»Π΅, ΠΈΠ· Π·Π°ΠΊΠΎΠ½Π° Π‘ΠΈΠΎ — Π‘Π°Π²Π°Ρ€Π° — Лапласа (6.1) ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° супСрпозиции (6.4) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ уравнСния для Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ уравнСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ постоянного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля.

ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰Π΅ΠΉ постоянноС ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅. Π­Ρ‚ΠΈ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ уравнСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ постоянного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля.
ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ уравнСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ постоянного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля.

ЛСвая Ρ‡Π°ΡΡ‚ΡŒ уравнСния (6.8) Π΅ΡΡ‚ΡŒ циркуляция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π’ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΌΡƒ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌΡƒ ΠΊΠΎΠ½Ρ‚ΡƒΡ€Ρƒ Π‘, Π° ΠΏΡ€Π°Π²Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π° алгСбраичСской суммС? I Ρ‚ΠΎΠΊΠΎΠ², ΠΎΡ…Π²Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… этим ΠΊΠΎΠ½Ρ‚ΡƒΡ€ΠΎΠΌ (рис. 6.4). НаправлСниС ΠΎΠ±Ρ…ΠΎΠ΄Π° ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π° Π‘ (Ρ‚.Π΅. Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° dl) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π±Ρ€Π°Π½ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎ. ΠŸΡ€ΠΈ этом Ρ‚ΠΎΠΊ, ΠΎΡ…Π²Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ ΠΊΠΎΠ½Ρ‚ΡƒΡ€ΠΎΠΌ, считаСтся ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚. Π΅. Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² ΡΡƒΠΌΠΌΡƒ ?3 / со Π·Π½Π°ΠΊΠΎΠΌ ''плюс", Ссли Π΅Π³ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ связано с ΠΎΠ±Ρ…ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ ΠΏΡ€Π°Π²ΠΎΠ³ΠΎ Π²ΠΈΠ½Ρ‚Π°. Π’ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС Ρ‚ΠΎΠΊ считаСтся ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ. На Ρ€ΠΈΡ. 6.4 Ρ‚ΠΎΠΊΠΈ 1 ΠΈ /Π³ ΠΎΡ…Π²Π°Ρ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠ½Ρ‚ΡƒΡ€ΠΎΠΌ (7, Π° Ρ‚ΠΎΠΊ 1Π· — Π½Π΅Ρ‚. ΠŸΡ€ΠΈ этом сумма Ρ‚ΠΎΠΊΠΎΠ² / = /i — /2, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚ΠΎΠΊ 1 — ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½, Π° Ρ‚ΠΎΠΊ /2 — ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»Π΅Π½.

А' Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ циркуляции Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π’.

Рис. 6−4- А' Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ Ρ†ΠΈΡ€ΠΊΡƒΠ»ΡΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π’.

Π‘Π΅Π»ΠΈ Π³ΠΎΠΊ Ρ‚Π΅Ρ‡Π΅Ρ‚ Π½Π΅ ΠΏΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°ΠΌ, Π° Π² ΡΠΏΠ»ΠΎΡˆΠ½ΠΎΠΉ срСдС, Ρ‚ΠΎ ΠΎΠ½ ΠΎΠΏΠΈΡΡ‹Π²Π°Π΅Ρ‚ся Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΠΎΠ»Π΅ΠΌ j = плотности Ρ‚ΠΎΠΊΠ°. Π’ ΡΡ‚ΠΎΠΌ случаС сила Ρ‚ΠΎΠΊΠ° /, ΠΎΡ…Π²Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚ΡƒΡ€ΠΎΠΌ Π‘, Ρ€Π°Π²Π½Π° ΠΏΠΎΡ‚ΠΎΠΊΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° j ΠΏΠ»ΠΎΡ‚ности Ρ‚ΠΎΠΊΠ° Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ 5, Π½Π°Ρ‚ΡΠ½ΡƒΡ‚ΡƒΡŽ Π½Π° ΡΡ‚ΠΎΡ‚ ΠΊΠΎΠ½Ρ‚ΡƒΡ€ (рис. 6.5):

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ уравнСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ постоянного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля.

Π³Π΄Π΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ ΠΏ ΠΊ ΠΏΠΎΠ²Π΅Ρ€Ρ…ности 5 связано с ΠΎΠ±Ρ…ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ ΠΏΡ€Π°Π²ΠΎΠ³ΠΎ Π²ΠΈΠ½Ρ‚Π°. ΠŸΡ€ΠΈ этом вмСсто уравнСния (6.8) слСдуСт Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ.

ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ S, натянутая Π½Π° ΠΊΠΎΠ½Ρ‚ΡƒΡ€ Π‘.
Рис. 6.5. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ S, натянутая Π½Π° ΠΊΠΎΠ½Ρ‚ΡƒΡ€ Π‘.

Рис. 6.5. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ S, натянутая Π½Π° ΠΊΠΎΠ½Ρ‚ΡƒΡ€ Π‘

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (6.9) ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡ‚ΠΎΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ Π‘ постоянного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΡƒΡŽ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ 5 Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ. ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ силовыС Π»ΠΈΠ½ΠΈΠΈ постоянного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля всСгда Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹ Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΡΠΈΠ»ΠΎΠ²Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ постоянного элСктричСского поля, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‚ΡΡ ΠΈ Π·Π°ΠΊΠ°Π½Ρ‡ΠΈΠ²Π°ΡŽΡ‚ся Π½Π° Π·Π°Ρ€ΡΠ΄Π°Ρ….

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ уравнСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ постоянного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля.

Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ уравнСниям (6.9) ΠΈ (6.11) ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰Π΅Π΅ условиям (6.9) ΠΈΠ»ΠΈ (6.12), Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²ΠΈΡ…Ρ€Π΅Π²Ρ‹ΠΌ, ΠΈΠ»ΠΈ ΡΠΎΠ»Π΅Π½ΠΎΠΈΠ΄Π°Π»ΡŠΠ½Ρ‹ΠΌ. Π’Π°ΠΊΠΎΠ²Ρ‹ΠΌ являСтся постоянноС ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ