Модели построения баз данных
Реляционная база данных представляет собой хранилище данных, организованных в виде двумерных таблиц. Таблицы отражают тип объекта (сущности), разделенные на строки, представляющие собой экземпляры объекта и столбцы, соответствующие атрибутам, на пересечении которых содержатся значения данных, составляющие основу организации реляционной модели данных. Модель данных — это абстрактное… Читать ещё >
Модели построения баз данных (реферат, курсовая, диплом, контрольная)
Модель данных — это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы — поведение данных.
В настоящее время существуют следующие основные модели построения баз данных: иерархическая, сетевая, объектная, объектно-ориентированная, реляционная.
Рассмотрим особенности каждой из моделей построения баз данных.
Иерархическая структура представляет множество элементов, имеющих между собой связи по определенным правилам. Объекты, связанные иерархическими отношениями, образуют ориентированный граф (перевернутое дерево).
К основным понятиям иерархической структуры относятся: уровень, элемент (узел), связь.
Узел — это совокупность атрибутов данных, которые описывают некоторый объект.
На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на низшем уровне связан только с одним узлом, который находится на более высоком уровне.
Иерархическое дерево имеет единственную вершину (корень дерева), не подчиненную никакой другой вершине и находится на самом верхнем (первому) уровне. Зависимые (подчиненные) узлы находятся на втором, третьем и так далее уровнях. Количество деревьев в базе данных соответствует числу корневых записей. К каждой записи базы данных существует только один (иерархический) путь от корневой записи.
Особенностью реализации операций поиска в иерархической модели является то, что операция всегда начинает поиск с корневой вершины и специфицирует иерархический путь (последовательность связанных вершин) от корня до вершины, экземпляры которой удовлетворяют условиям поиска.
Структура иерархической модели данных представлена на рисунке 3 [12, с. 206].
Рисунок 3 — Структура иерархической модели данных Структура иерархической модели данных (рисунок 3) состоит из структурной части и управляющий части. В структурной части иерархической модели данных выделяют поле, представляющие собой наименьшую единицу данных, доступную пользователю и сегмент, для которого определяются тип и экземпляр. Причем экземпляр сегмента образуется из значений полей данных заданных определенным образом и поименованной совокупности входящих в него типов полей данных определяемых типом сегмента.
Основными достоинствами иерархической модели данных являются: эффективное использование памяти ЭВМ; высокая скорость выполнения операций над данными; удобство работы с иерархически упорядоченной информацией.
Недостатком иерархической модели является ее громоздкость для обработки информации с достаточно сложными логическими связями.
На иерархической модели данных основано сравнительно ограниченное количество СУБД, в числе которых можно назвать зарубежные системы IMS, PC / Focus, Team — Up и Data Edge, а также отечественные системы Ока, ИНЭС и МИРИС.
Сетевая модель данных является расширением иерархического подхода, описывается строгой математической теорией, отражающей структурный, целостный и аспект обработки данных, и состоит из набора экземпляров определенного типа записи и набора экземпляров определенного типа связей между этими записями.
Основное отличие сетевой структуры от иерархической структуры данных заключается в том, что каждый элемент в сетевой структуре может быть связан с любым другим элементом.
Достоинствами сетевой модели данных являются: эффективность в использовании памяти компьютера; высокая скорость выполнения основных операций над данными; огромные возможности по сравнению с иерархической модели по образованию произвольных связей.
Недостатками сетевой модели данных являются: высокая сложность и жесткость схемы базы данных, которая построена на ее основе; трудность для понимания и выполнения обработки информации в базе данных непрофессиональным пользователем.
Наиболее известными сетевыми СУБД являются: IDMS, db _ VistaIII, СЕТЬ, СЕТОР и КОМПАС.
Объектная модель базы данных используется в основном для создания высокого уровня абстракции и работы с объектными данными, такими как изображение, музыка, видео и различного текста, Характеристика современных объектных моделей баз данных приведена в таблице 1 [13, с. 199].
Таблица 1 — Современные объектные модели баз данных.
Название. | Назначение. |
Versant (разработка Versant Technologies). | Используется для разработки телекоммуникаций. |
POET (компания POET Software). | Поддержка интерфейсов C++, Java, Visual Basic. |
Object Store PSE (разработка компании Object Design). | Модули объектов Java. |
Объектно-ориентированная модель отличается от объектной модели тем, что данные могут, как моделироваться в виде объектов, так и представляться атрибутами, методами и классами [14, с. 22].
Объектно-ориентированные модели представления данных позволяют идентифицировать отдельные записи базы. Между записями базы данных и функциями их обработки формируются определенные взаимосвязи с помощью механизмов, похожих на соответствующие средства в объектно-ориентированных языках программирования. Характеристики объектно-ориентированной модели данных приведены в Приложении А.
Достоинствами объектно-ориентированной модели данных являются: возможность показа информации о сложных взаимосвязях объектов; способность идентификации отдельной записи базы данных и определения функции ее обработки.
К недостаткам объектно-ориентированной модели данных относятся: трудность в понимании ее деятельности непрофессиональным пользователем; неудобство обработки данных; небольшая скорость выполнения запросов.
Среди объектно-ориентированных СУБД можно выделить системы фирмы РОЕТ: Software, Versant фирмы Versant Technologies и др.
Реляционная база данных представляет собой хранилище данных, организованных в виде двумерных таблиц. Таблицы отражают тип объекта (сущности), разделенные на строки, представляющие собой экземпляры объекта и столбцы, соответствующие атрибутам, на пересечении которых содержатся значения данных, составляющие основу организации реляционной модели данных.
Для упорядочивания строк в реляционной таблице модели данных используется первичный ключ, который представляет собой атрибут или группу атрибутов, а для упорядочивания столбцов одной таблицы, значения в котором совпадают со значениями в другой таблице, используется внешний ключ. Реляционная модель данных поддерживает операторы обработки отношений, таких как реляционная алгебра и реляционное исчисление.
Основные правила реляционной модели данных отражены на рисунке 4.
Рисунок 4 — Основные правила реляционной модели данных В реляционной модели данных различают связи по типу и мощности связи, которая представляет собой отношение количества экземпляров родительской сущности к соответствующему количеству дочерней сущности.
В таблице 2 приведены характеристики используемых в реляционной модели данных связей [16, с. 36].
Таблица 2 — Виды связей, используемых в реляционной модели данных.
Название. | Характеристика. |
По типу: | |
Идентифицирующая. | Экземпляр дочерней сущности идентифицируется через ее связь с родительской сущностью. |
Не идентифицирующая. | Атрибуты, которые составляют первичный ключ родительской сущности, входят в состав не ключевых атрибутов дочерней сущности. |
По мощности связи: | |
Один к одному. | Одной строке родительской таблицы может соответствовать не более одной сроки дочерней таблицы. |
Один ко многим. | Одной строке родительской таблицы может соответствовать множество строк дочерней таблицы, но любой сроке дочерней таблицы может соответствовать только одна строка родительской таблицы. |
Особое значение в реляционной модели данных уделяется нормализации отношений, которая представляет собой процесс функциональной зависимости между атрибутами одного и того же отношения, когда каждому значения одного атрибута соответствует только одно значение второго атрибута.
Нормализация связана с разделением одной таблицы на две или более таблиц, которые соответствуют требованиям нормальных форм, характеристика которых приведена в таблице 3 [17, с. 103].
Таблица 3 — Характеристика нормальных форм.
Название формы. | Характеристика. |
Первая нормальная форма (1НФ). | На любом пересечении строки и столбца находится единственное значение, которое должно быть атомарным, при этом не должно быть повторяющихся групп. |
Вторая нормальная форма (2НФ). | В основе находится понятие полной функциональной зависимости, когда один атрибут полностью функционально зависит от другого атрибута и не зависит от какого-либо подмножества атрибута. |
Третья нормальная форма (3НФ). | В основе находится транзитивная зависимость, то есть, чтобы ни один не ключевой столбец не зависел бы от другого не ключевого столбца. |
Четвертая нормальная форма (4НФ). | В основе находится многозначная зависимость, которая существует между атрибутами некоторого отношения, однако входящие в эти наборы значения не зависят друг от друга. |
Пятая нормальная форма (5НФ). | Отношение, которое не содержит зависимостей соединения, то есть когда декомпозиция отношения может сопровождаться генерацией ложных строки при обратном соединении декомпозированных отношений с помощью операции естественного соединения. |
Достоинство реляционной модели данных заключается в простоте, понятности и удобстве физической реализации на ЭВМ. Именно простота и понятность для пользователя явились основной причиной ее широкого использования.
К основным недостаткам реляционной модели относятся отсутствие стандартных средств идентификации отдельных записей и сложность описания иерархических и сетевых связей.
Примерами зарубежных реляционных СУБД для ПЭВМ являются: DB 2, Paradox, FoxPro, Access, Clarion, Oracle. К отечественным СУБД реляционного типа относятся системы ПАЛЬМА и HyTech.
На основании проведенного анализа основных моделей построения баз данных для дальнейшего исследования выбираем реляционную модель, как наиболее простую и удобную для физической реализации на ЭВМ.