Сетевое планирование и управление (СПУ)
В качестве модели, отражающей технологические и организационные взаимосвязи процесса производства строительно-монтажных работ в системах сетевого планирования и управления (СПУ), используется сетевая модель. Сетевой моделью называется графическое изображение процессов, выполнение которых приводит к достижению одной или нескольких поставленных целей, с указанием установленных взаимосвязей между… Читать ещё >
Сетевое планирование и управление (СПУ) (реферат, курсовая, диплом, контрольная)
Назначение и область применения
Сетевое планирование управления (СПУ) основано на моделировании процесса с помощью сетевого графика и представляет собой совокупность расчетных методов, организационных и контрольных мероприятий по планированию и управлению комплексом работ.
- · строительство и реконструкция каких-либо объектов;
- · выявлять и мобилизовывать резервы времени, трудовые, материальные и денежные ресурсы
- · выполнение научно-исследовательских и конструкторских работ;
- · подготовка производства к выпуску продукции;
Под комплексом работ (комплексом операций, или проектом) в рамках теории методов сетевого планирования и управления понимается всякая задача, для выполнения которой необходимо осуществить достаточно большое количество разнообразных работ. Они обусловливают друг друга так, что выполнение некоторых работ не может быть начато раньше, чем завершены некоторые другие.
Сетевая модель
В качестве модели, отражающей технологические и организационные взаимосвязи процесса производства строительно-монтажных работ в системах сетевого планирования и управления (СПУ), используется сетевая модель. Сетевой моделью называется графическое изображение процессов, выполнение которых приводит к достижению одной или нескольких поставленных целей, с указанием установленных взаимосвязей между этими процессами. Сетевой график представляет собой сетевую модель с расчетными временными параметрами. Пример сетевого графика показан на рисунке.
Цифры в кружках — номера событий (первое — исходное, восьмое — завершающее); жирные стрелки — критические работы; цифры под стрелками — продолжительность работы.
Основными элементами сетевой модели, а, следовательно, и сетевого графика является работа и событие и путь. Структура сетевого графика, определяющая взаимную зависимость работ и событий, называется его топологией Работа-это некоторый процесс, приводящий к достижению определенного результата, требующий затрат каких-либо ресурсов и имеющий протяженность во времени.
По своей физической природе работы можно рассматривать как:
- · действие (заливка фундамента бетоном);
- · процесс (выдерживание вина);
- · ожидание (твердение бетона).
По количеству затрачиваемого времени работа может быть:
- · Действительная работа в прямом смысле слова (например — подготовка трассы соревнований), требующая затрат труда, материальных ресурсов и времени;
- · Ожидание — работа не требующая затрат труда и материальных ресурсов, но занимающая некоторое время;
- · Фиктивная работа (Зависимость) — связь между двумя или более событиями, не требующая затрат труда, материальных ресурсов и времени, но указывающая, что возможность начала одной операции непосредственно зависит от выполнения другой.
Фиктивная работа может реально существовать, например, «передача документов от одного отдела к другому». Если продолжительность такой работы несоизмеримо мала по сравнению с продолжительностью других работ проекта, то формально ее принимают равной 0. Существуют фиктивные работы, которым в реальности не соответствуют никакие действия. Такие фиктивные работы только представляют связь между другими работами сетевой модели. Работы связаны друг с другом таким образом, что выполнение одних работ может быть начато только после завершения некоторых других.
Событие — завершение некоторого этапа в выполнении работ, момент завершения одной или нескольких работ. Событие представляет собой результат проведенных работ и в отличие от работ не имеет протяженности во времени. Например, фундамент залит бетоном и т. д.
Таким образом, начало, и окончание любой работы описываются парой событий, которые называются начальным и конечным событиями. Поэтому для идентификации конкретной работы используют код работы (ij), состоящий из номеров начального (i-ro) и конечного (j-ro) событий, например 2−4; 3−8; 9−10.
На этапе структурного планирования взаимосвязь работ и событий изображается с помощью сетевого графика. События на сетевом графике (графе) изображаются кружками (вершинами графа), а работы — стрелками (ориентированными дугами), показывающими связь между работами. Около каждой стрелки ставится среднее время выполнения соответствующей работы. Любое событие может считаться наступившим только тогда, когда закончатся все входящие в него работы. Поэтому работы, выходящие из некоторого события не могут начаться, пока не будут завершены все операции, входящие в это событие.
Номер исходного события равен единице. Номера остальных событий соответствуют последней цифре кода предшествующей данному событию работы (или работ).
Среди событий сетевой модели выделяют исходное и завершающее события. Исходное событие не имеет предшествующих работ и событий, относящихся к представленному в модели комплексу работ. Завершающее событие не имеет последующих работ и событий. Событие, характеризующее собой факт окончания всех предшествующих работ и начало всех последующих работ, называется промежуточным или просто событием.
Важное значение для анализа сетевых моделей имеет понятие пути.
Любая последовательность работ в сетевом графике, в котором конечное событие каждой работы этой последовательности совпадает с начальным событием следующей за ней работой, называется путем. Различают следующие виды путей:
Полный путь — это путь от исходного до завершающего события. Критический путь — максимальный по продолжительности полный путь.
Критический путь можно найти двумя способами: С помощью сетевого графика.
- 1. 1 этап: от исходного события до завершающего определяем ранний срок событий.
- 2. 2 этап: от завершающего события до исходного определяем поздний срок событий.
- 3. События, у которых ранний срок совпадает с поздним, называются критическими и не имеют резервов времени.
- 4. Критические работы лежат между критическими событиями.
- 5. Критический путь — непрерывная цепочка критических работ.
С помощью линейной диаграммы.
1. Линейная диаграмма строится в декартовой системе координат, и позволяет понять какая работа в данный момент времени должна выполняться. По оси x — время, по оси y — работы.
Подкритический путь — полный путь, ближайший по длительности к критическому пути.
Работы, лежащие на критическом пути, называют критическими. Каждый путь характеризуется своей продолжительностью (длительностью), которая равна сумме продолжительностей составляющих его работ.