Специальная теория относительности
Из этих двух принципов Эйнштейн вывел математически лоренцево сокращение движущихся тел при их наблюдении из покоящейся системы: если скорость движущегося тела приближается к скорости света, сжатие достигает максимума и тело сжимается в плоскую фигуру. Отсюда следует, что скорость, превышающая скорость света в пустоте, не имеет никакого физического смысла, т. е. скорость распространения света… Читать ещё >
Специальная теория относительности (реферат, курсовая, диплом, контрольная)
Эйнштейн кладет два принципа, которые он формулирует следующим образом:
- 1. Принцип относительности (позднее названный специальным принципом относительности). Законы, управляющие всеми физическими явлениями, — одни и те же для двух наблюдателей, движущихся равномерно и прямолинейно относительно друг друга.
- 2. Принцип постоянства скорости света. Свет распространяется в пустоте с постоянной скоростью по всем направлениям независимо от движения источника и наблюдателя.
Из этих двух принципов Эйнштейн вывел математически лоренцево сокращение движущихся тел при их наблюдении из покоящейся системы: если скорость движущегося тела приближается к скорости света, сжатие достигает максимума и тело сжимается в плоскую фигуру. Отсюда следует, что скорость, превышающая скорость света в пустоте, не имеет никакого физического смысла, т. е. скорость распространения света в пустоте — максимально достижимая в природе.
Принцип постоянства скорости света находится в прямом противоречии с принципами классической механики. Он устанавливает верхний предел возможных скоростей, тогда как в классической механике возможны сколь угодно большие скорости. Поэтому новый постулат приводит к изменению правила сложения скоростей классической механики. Так, сложение скорости света со скоростью источника дает во всех случаях опять-таки скорость света. Классическая формула сложения скоростей одинакового направления очень проста: результирующая скорость равна алгебраической сумме составляющих скоростей. Релятивистская формула, найденная Эйнштейном, более сложна и обладает тем свойством, что при малых скоростях, далеких от скорости света, она практически эквивалентна классической формуле, отклоняясь от нее тем больше, чем больше складывающиеся скорости Утверждения релятивистской механики отличаются от утверждений классической механики, но переходят в них при малых скоростях. Таким образом, классическая механика оказывается первым приближением, справедливым для обычных условий; этим и объясняется, почему ее считали точной и соответствующей опыту в течение более чем двух столетий.
«Было бы нелепо, — говорит Эйнштейн в одной из своих популярных книг, — применять теорию относительности к движению автомобилей, пароходов и поездов, как нелепо употреблять счетную машину там, где вполне достаточно таблицы умножения».
Одним из первых следствий из принятых постулатов является то, что все физические законы или, лучше сказать, их математические выражения остаются инвариантными при лоренцевых преобразованиях. Тем самым был установлен критерий для определения того, укладывается ли какой-нибудь закон в релятивистскую схему: достаточно убедиться, что его математическое выражение не меняет своей формы при лоренцевых преобразованиях. Таким образом, было установлено, например, что уравнения Максвелла укладываются в релятивистскую схему, а закон всемирного тяготения не вписывается в нее. Минковский, у которого некогда учился Эйнштейн в Цюрихе, в своей знаменитой теории, сформулированной в 1907 — 1908 гг. и исходящей из положения, что пространство и время — абсолютно неотделимые понятия, ввел новый формализм, в котором математическая форма записи закона гарантирует его инвариантность при лоренцевых преобразованиях.
Естественно, основное положение классической механики — пропорциональность силы ускорению — существенным образом изменяется в новой механике. Даже не прибегая к математическим расчетам, можно догадаться о необходимости таких изменений. Действительно, поскольку скорость света принята максимально возможной в природе, никакая сила не может увеличить скорость тела, движущегося со скоростью света, т. е. при этих условиях сила уже не вызывает ускорения. В релятивистской механике тело тем труднее ускорить, чем больше его скорость. А поскольку сопротивление изменению скорости тела называют массой тела, отсюда вытекает, что масса тела возрастает со скоростью. В то время как классическая механика рассматривает массу тела как постоянную величину, в теории относительности она считается переменной и зависящей от скорости. Та масса, которая рассматривается в классической механике, — это релятивистская масса покоя. Более того, релятивистская механика доказывает, что масса зависит не только от скорости, но и от направления силы. Поэтому говорят о продольной массе и поперечной массе. В связи с этим интересно отметить, что еще в 1890 г. Поль Пенлеве (1863−1932) с помощью чисто математического обобщения классической динамики точки ввел понятия продольной и поперечной масс.
Изменение массы можно экспериментально обнаружить лишь при больших скоростях, близких к скорости света. Идеальными объектами для этой экспериментальной проверки являются электроны. И действительно, в 1902 г. Кауфман установил зависимость поперечной массы в-частиц от их скорости, подтвердив тем самым это следствие теории относительности еще до того. как она была сформулирована. В 1906 г. он подтвердил свои результаты последующими измерениями. В 1914 г. Глитчер, а годом позже Зоммерфельд, анализируя данные некоторых опытов Пашена о тонкой структуре спектральных линий гелия, показали, что массы электронов, обращающихся вокруг ядра, удовлетворяют релятивистским соотношениям для массы. В 1935 г. Наккен в опытах с катодными лучами при напряжении между электродами, достигавшем 200 000 в, подтвердил релятивистскую формулу зависимости массы от скорости с точностью до 1%. Другие экспериментальные подтверждения были получены в исследованиях следов электронов в камере Вильсона и по данным о космических лучах.
В том же 1905 г. Эйнштейн вывел чисто математическим путем из зависимости массы от скорости исключительно важное следствие. Предположим, что в коробке покоится несколько шариков. Если к коробке приложить внешнюю силу, то она приобретет определенное ускорение, зависящее от массы покоя шариков. Но пусть эти шарики движутся по всем направлениям, со скоростями, близкими к скорости света. Вызовет ли при этом внешняя сила такой же эффект? Конечно, нет, поскольку скорость шариков увеличивает их массу. Следовательно, кинетическая энергия шариков оказывает, подобно массе, сопротивление движению. Таким образом, в теории относительности нет существенного различия между массой и энергией: энергия обладает массой, а масса представляет собой энергию.
Эквивалентность массы и энергии представлялась самым парадоксальным утверждением теории относительности. Но мы уже убедились выше, что точка зрения теории относительности является весьма плодотворной. Все человечество убедилось в этом на трагическом примере — взрыве бомбы в Хиросиме. [4].