Заказать курсовые, контрольные, рефераты...
Образовательные работы на заказ. Недорого!

Метод ветвей и границ

РефератПомощь в написанииУзнать стоимостьмоей работы

На рис. 1 пространство допустимых решений задачи целочисленного линейного программирования представлено точками. Соответствующая начальная задача линейного программирования (обозначим ее ЛП0) получается путем отбрасывания условия целочисленности. Ее оптимальным решением будет =3.75, =1.25, z=23.75. Новые ограничения и взаимоисключаемы, так что задачи ЛП1 и ЛП2 необходимо рассматривать как… Читать ещё >

Метод ветвей и границ (реферат, курсовая, диплом, контрольная)

Рассмотрим следующую задачу целочисленного линейного программирования. Максимизировать при ограничениях.

На рис. 1 пространство допустимых решений задачи целочисленного линейного программирования представлено точками. Соответствующая начальная задача линейного программирования (обозначим ее ЛП0) получается путем отбрасывания условия целочисленности. Ее оптимальным решением будет =3.75, =1.25, z=23.75.

Так как оптимальное решение задачи ЛП0 не удовлетворяет условия целочисленности, метод ветвей и границ изменяет пространство решений задачи линейного программирования так, что в конечном счете получается оптимальное решение задачи целочисленного линейного программирования. Для этого сначала выбирается одна из целочисленных переменных, значение которой в оптимальном решении задачи ЛП0 не является целочисленным. Например, выбирая (=3.75), замечаем, что область 3? ?4 пространства допустимых решений задачи ЛП0 не содержит целочисленных значений переменной и, следовательно, может быть исключена из рассмотрения, как бесперспективная. Это эквивалентно замене исходной задачи ЛП0 двумя новыми задачами линейного программирования ЛП1 и ЛП2, которые определяются следующим образом:

Пространство допустимых решений ЛП1 = пространство допустимых решений ЛП0 + (), пространство допустимых решений ЛП2 = пространство допустимых решений ЛП0 + ().

На рис. 2 изображены пространства допустимы решений задач ЛП1 И ЛП2. Оба пространства содержат все допустимые решения исходной задачи ЦЛП. Это обозначает, что задачи ЛП1 и ЛП2 «не потеряют» решения начальной задачи ЛП0.

Если продолжим разумно исключать из рассмотрения области, не содержащие целочисленных решений (такие, как), путем введения надлежащих ограничений, то в конечном счете получим задачу линейного программирования, оптимальное решение которой удовлетворяет требованиям целочисленности. Другими словами, будем решать задачу ЦЛП путем решения последовательности непрерывных задач линейного программирования.

Новые ограничения и взаимоисключаемы, так что задачи ЛП1 и ЛП2 необходимо рассматривать как независимые задачи линейного программирования, что и показано на Рис. 3. Дихотомизация задач ЛП — основа концепции ветвления в методе ветвей и границ. В этом случае называется переменной ветвления.

Оптимальное решение задачи ЦЛП находятся в пространстве допустимых решений либо в ЛП1, либо в ЛП2. Следовательно, обе подзадачи должны быть решены. Выбираем сначала задачу ЛП1 (выбор произволен), имеющую дополнительное ограничение ?3.

Максимизировать при ограничениях.

Оптимальным решением задачи ЛП1 является, и. Оптимальное решение задачи ЛП1 удовлетворяет требованию целочисленности переменных и. В этом случае говорят что задача прозондирована. Это означает, что задача ЛП1 не должна больше зондироваться, так как она не может содержать лучшего решения задачи ЦЛП.

Мы не можем в этой ситуации оценить качество целочисленного решения, полученного из рассмотрения задачи ЛП1, ибо решение задачи ЛП2 может привести к лучшему целочисленному решению (с большим решением в целевой функции z). Пока мы можем лишь сказать, что значение является нижней границей оптимального (максимального) значения целевой функции исходной задачи ЦЛП. Это значит, что любая нерассмотренная подзадача, которая не может привести к целочисленному решению с большим значением целевой функции, должна быть исключена, как бесперспективная. Если же нерассмотренная подзадача может привести к лучшему целочисленному решению, то нижняя граница должна быть надлежащим образом изменена.

При значении нижней границы исследуем ЛП2. Так как в задачи ЛП0 оптимальное значение целевой функции равно 23.75 и вес ее коэффициенты являются целыми числами, то невозможно получить целочисленное решение задачи ЛП2, которое будет лучше имеющегося. В результате мы отбрасываем подзадачу ЛП2 и считаем ее прозондированной.

Реализация метода ветвей и границ завершена, так как обе подзадачи ЛП1 и ЛП2 прозондированы. Следовательно, мы заключаем, что оптимальным решением задачи ЦЛП является решение, соответствующей нижней границе, а именно, и .

Если бы мы выбрали в качестве ветвлении переменную то ветвления и скорость нахождения оптимального решения были бы другими Рис. 4.

Рис. 4. Дерево ветвлений решений

Показать весь текст
Заполнить форму текущей работой