Пищевые потребности микроорганизмов
Кроме источников основных питательных веществ (органогенные элементы, зольные и микроэлементы), многие микроорганизмы нуждаются в специфических соединениях, которые регулируют рост и называются факторами роста. К ним относят витамины и витаминоподобные вещества, пурины и пиримидины, аминокислоты и ряд других соединений. Не обнаруживающие потребности в факторах роста микроорганизмы называются… Читать ещё >
Пищевые потребности микроорганизмов (реферат, курсовая, диплом, контрольная)
Основную часть микробной клетки составляет вода (80—90% общей массы). В состав клеток микроорганизмов входят следующие элементы (% массы сухого вещества): углерод — 50; кислород — 20; азот — 14; водород — 8; фосфор — 3; сера — 1; калий — 1; натрий — 1; кальций — 0,5; магний — 0,5; хлор — 0,5; железо — 0,2; другие элементы — 0,3. В очень небольших количествах в состав клетки входят микроэлементы цинк, медь, кобальт, стронций, марганец и др.
Для биосинтеза основных макромолекул клетки, из которых формируются клеточная стенка, мембраны, нуклеоид, цитоплазма и другие компоненты, микроорганизмы должны получать все эти элементы в составе источников питания.
Помимо питательных элементов, используемых для построения структурных частей клетки, микроорганизмы нуждаются в постоянном источнике энергии, которая расходуется на биосинтез, транспорт веществ и другие жизненные процессы в клетке.
Углерод. Наибольшее значение для питания микроорганизмов имеет углерод, составляющий в сухом веществе клеток около 50%. Потребности различных микроорганизмов в источниках углерода весьма разнообразны. Фотосинтезирующие организмы, использующие энергию солнечного света, и бактерии, получающие энергию при окислении неорганических веществ, потребляют наиболее окисленную форму углерода (С02) как единственный или главный источник углерода. Превращение С02 в органические соединения клетки представляет собой восстановительный процесс, который идет со значительным потреблением энергии. Поэтому большую часть энергии, получаемой от солнечного света или от окисления восстановленных неорганических соединений, данные физиологические группы микроорганизмов расходуют на восстановление С02 до уровня органического вещества.
Другие организмы получают углерод главным образом из органических веществ, а необходимую энергию — при окислении этих соединений. Следовательно, органические вещества служат одновременно и источником углерода, и источником энергии.
Питательная ценность органических источников углерода зависит от строения их молекул. Для большинства микроорганизмов лучший источник углерода — органические соединения, содержащие частично окисленные атомы углерода (группы —СНОН, —СН2ОН, —СОН). Отсюда можно сделать вывод о высокой питательной ценности веществ, содержащих спиртовые группы.
Значительно хуже ассимилируются вещества с большим количеством полностью восстановленных атомов углерода (радикалы —СН3 и =СН2). К числу соединений, содержащих метиловые и метиленовые радикалы, относятся газообразные углеводороды, парафин, высшие жирные кислоты и т. д. Почти совсем не усваиваются органические соединения, содержащие углерод только в форме карбоксила (—СООН), например щавелевая кислота.
Считают, что питательная ценность органических соединений связана с легкостью их перехода в углеводы или близкие к ним соединения, которые затем превращаются в вещества с тремя атомами углерода (пируват). Усвояемость органических соединений зависит не только от их растворимости и степени окисленности атомов углерода, но и от пространственной конфигурации молекул. Большинство активных компонентов клетки микроорганизма — соединения оптически деятельные, причем клетка обычно усваивает только определенные оптические изомеры, например сахара, относящиеся к D-ряду, аминокислоты — к L-ряду. Очень немногие микроорганизмы обладают ферментами, превращающими один оптический изомер в другой.
Поглощенные микробной клеткой органические вещества вовлекаются в сопряженные окислительно-восстановительные процессы. Часть атомов углерода окисляется до соединений с группами —СО и —СООН, которые затем преобразуются в С02, другая часть, восстановившись до групп —СН3, =СН2 и =СН, входит в состав аминокислот, пуриновых и пиримидиновых оснований, высших жирных кислот и т. п.
Микроорганизмы значительно различаются по способности усваивать разные соединения углерода и синтезировать из них составные части клетки. Некоторые виды удивительно всеядны. Однако известно и множество различных специализированных микроорганизмов, которые нуждаются в определенных соединениях. Существуют виды, использующие для питания нефть, газообразные углеводороды, парафины. Резина, гудрон, капрон и другие синтетические материалы и даже пестициды после попадания в почву начинают разлагаться при участии микроорганизмов. Практически не существует органических соединений, которые не усваивались бы микроорганизмами.
Специфичность набора органических соединений, свойственная каждому виду микроорганизмов, используется для физиологической характеристики вида и для классификации микроорганизмов.
Ряд микроорганизмов, использующих углерод органических соединений, нуждаются и в диоксиде углерода как в питательном веществе, однако в очень небольших количествах, так как он потребляется лишь в некоторых биосинтетических реакциях. Поскольку С02 нормально продуцируется большинством микроорганизмов, использующих органические вещества, их биосинтетические потребности могут удовлетворяться в процессе метаболизма. Тем не менее полное удаление С02 из среды, в которой культивируют микроорганизмы, часто задерживает или прекращает их рост. Некоторым бактериям и грибам для роста необходима довольно высокая концентрация С02 в атмосфере (5—10%).
Азот. Микроорганизмы нуждаются в источниках азотного питания. Азот служит материалом для образования аминных (NH2) и иминных (NH) групп в молекулах аминокислот, пуринов и пиримидинов, нуклеиновых кислот и других веществ клетки. Самый доступный источник азота для многих микроорганизмов — ионы аммония (NH4) и аммиак (NH3), достаточно быстро проникающие в клетку и трансформирующиеся в аминои иминогруппы.
Аммонийные соли органических кислот предпочтительнее для питания микроорганизмов, чем минеральные аммонийные соли, поскольку последние являются физиологически кислыми, и при потреблении NH3 в среде накапливаются анионы неорганических кислот (SO^-, НРО^~, С1_), что влечет за собой сильное снижение pH среды.
Соли азотной кислоты в отличие от минеральных аммонийных солей не являются физиологически кислыми. После потребления N03 микроорганизмами остаются ионы металлов (К+, Mg2+, Na+), что способствует подщелачиванию среды. Не все микроорганизмы могут восстанавливать окисленные соединения азота и потреблять нитраты или нитриты. В целом большинство микроорганизмов способны использовать минеральные соединения азота.
Существуют виды, способные усваивать молекулярный азот воздуха и строить из него необходимые компоненты клетки. Эти виды имеют большое значение в обогащении пахотного слоя связанными соединениями азота. Известно большое число групп микроорганизмов (бактерий и цианобактерий), способных к азотфиксации.
Наряду с минеральными источниками многие микроорганизмы могут потреблять азот из органических соединений, которые одновременно служат и источниками углерода. Использование органических источников азота связано с отщеплением от них NH3 и поглощением последнего клеткой. Некоторые микроорганизмы могут ассимилировать аминокислоты, употребляя их как готовые «строительные блоки».
Усвояемость органических источников азота весьма различна. Белки, представляющие собой высокомолекулярные соединения, не проникают в клетку. Поэтому белками могут питаться только микроорганизмы, выделяющие в среду экзоферменты, расщепляющие молекулы белков до пептидов и аминокислот. Указанными свойствами обладают многие микроорганизмы.
Обычно микроорганизмам, использующим только органические соединения азота, например аминокислоты, требуется определенный набор этих веществ. Высокая чувствительность подобных организмов к присутствию в среде некоторых аминокислот позволила разработать микробиологический метод их качественного и количественного определения.
Сера. Как и азот, сера — необходимый компонент клеточного материала всех организмов, в которых она встречается главным образом в восстановленной форме (сульфидная группа). Зеленые растения ассимилируют соединения серы в окисленном состоянии в виде сульфатов и восстанавливают их для включения в биосинтез.
Большинство микроорганизмов может использовать сульфаты как питательное вещество, но существуют бактерии, нуждающиеся для биосинтеза в источниках восстановленной серы.
Источником серы для них могут служить неорганические сульфиды, тиосульфаты и содержащие серу органические соединения.
Другие элементы питания микроорганизмов. Наряду с углеродом, азотом и серой микроорганизмы используют отельные количества калия и фосфора, небольшие — натрия, магния, кальция, железа.
Фосфор входит в состав ряда важных органических соединений клетки (нуклеиновые кислоты, фосфолипиды, коферменты и др.). Ряд органических соединений фосфора (АТФ и АДФ) используются в живых организмах как аккумуляторы энергии, высвобождающейся в ходе окислительных процессов. Без фосфора микроорганизмы не развиваются. В отличие от азота и серы фосфор встречается в составе органических веществ только в окисленном состоянии (Н3Р04). Он никогда не вступает в прямое соединение с углеродом, только по типу эфирной связи через кислородный мостик (—О—). Фосфор поступает в клетки микроорганизмов в виде молекулы фосфорной кислоты, в неизменной форме участвует в различных биохимических превращениях. Наилучший источник фосфора — соли ортофосфорной кислоты.
Калий играет существенную роль в углеводном обмене микроорганизмов и синтезе клеточного вещества.
Магний входит в состав бактериохлорофилла у зеленых и пурпурных бактерий, хлорофилла у цианобактерий, а также служит активатором ряда ферментов. Этот элемент находится в клетке главным образом в ионном состоянии или в составе нестойких органических соединений. Источником калия и магния могут быть их соли.
Кальций также необходим для роста бактерий (например, Azotobacter, Clostridium pasteurianum и др.). Источником кальция служат его водорастворимые соли.
К числу незаменимых питательных элементов, хотя и требующихся микроорганизмам в небольших количествах, относится железо. Оно входит в составе особой органической группировки (гема) в коферменты некоторых важных ферментов (например, цитохромов), участвующих в дыхании микроорганизмов. Источником железа могут быть сульфаты и другие его соли.
Микроорганизмам необходимы также микроэлементы, которые потребляются в малых количествах, но без них невозможно осуществление важнейших жизненных функций. Они входят в состав ферментов. Например, медь входит в состав порфиринов, участвующих в переносе кислорода в процессах дыхания, молибден — в состав фермента нитрогеназы, осуществляющей фиксацию азота из атмосферы.
Кроме источников основных питательных веществ (органогенные элементы, зольные и микроэлементы), многие микроорганизмы нуждаются в специфических соединениях, которые регулируют рост и называются факторами роста. К ним относят витамины и витаминоподобные вещества, пурины и пиримидины, аминокислоты и ряд других соединений. Не обнаруживающие потребности в факторах роста микроорганизмы называются прототрофами, нуждающиеся в том или ином ростовом веществе — ауксотрофами.