Заказать курсовые, контрольные, рефераты...
Образовательные работы на заказ. Недорого!

Классификация систем в системном анализе

РефератПомощь в написанииУзнать стоимостьмоей работы

Простые — системы, не имеющие разветвлённых структур, состоящие из небольшого количества взаимосвязей и небольшого количества элементов. Такие элементы служат для выполнения простейших функций, в них нельзя выделить иерархические уровни. Отличительной особенностью простых систем является детерминированность (четкая определенность) номенклатуры, числа элементов и связей как внутри системы, так… Читать ещё >

Классификация систем в системном анализе (реферат, курсовая, диплом, контрольная)

Классификация систем

Классификацией называется распределение некоторой совокупности объектов на классы по наиболее существенным признакам. Требования к построению классификации следующие:

  • · в одной и той же классификации необходимо применять одно и то же основание;
  • · объем элементов классифицируемой совокупности должен равняться объему элементов всех образованных классов;
  • · члены классификации (образованные классы) должны взаимно исключать друг друга, то есть должны быть непересекающимися;
  • · подразделение на классы (для многоступенчатых классификаций) должно быть непрерывным, то есть при переходах с одного уровня иерархии на другой необходимо следующим классом для исследования брать ближайший по иерархической структуре системы.

Большие системы. Под большой системой понимается совокупность материальных ресурсов, средств сбора, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и людей-руководителей, облеченных надлежащими правами и ответственностью для принятия решений. Большие системы — это системы, не наблюдаемые единовременно с позиции одного наблюдателя либо во времени, либо в пространстве.

Сложные системы. Сложные системы — это системы, которые нельзя скомпоновать из некоторых подсистем. Это равноценно тому, что:

Понятие сложности является одним из основополагающих в системном анализе. Системный анализ есть стратегия исследования, которая принимает сложность как существенное, неотъемлемое свойство объектов и показывает, как можно извлечь ценную информацию, подходя к ней с позиции сложных систем.

Динамические системы. Динамические системы — это постоянно изменяющиеся системы. Всякое изменение, происходящее в динамической системе, называется процессом. Его иногда определяют как преобразование входа в выход системы.

Если у системы может быть только одно поведение, то ее называют детерминированной системой.

Вероятностная система. Вероятностная система — система, поведение которой может быть предсказано с определенной степенью вероятности на основе изучения ее прошлого поведения.

Управляющие системы. Управляющие системы — это системы, с помощью которых исследуются процессы управления в технических, биологических и социальных системах. Центральным понятием здесь является информация — средство воздействия на систему. Управляющая система позволяет предельно упростить трудно понимаемые процессы управления в целях решения задач исследования проектирования.

Целенаправленные системы. Целенаправленные системы — это системы, обладающие целенаправленностью, то есть управлением системы и приведением к определенному поведению или состоянию, компенсируя внешние возмущения. Достижение цели в большинстве случаев имеет вероятностный характер.

Для составления классификации систем могут быть использованы различные классификационные признаки. В таблице 1 приведен пример классификации систем с использованием основных классификационных признаков использующихся в системном анализе.

Таблица 1. Классификация систем по признакам.

Классификационные признаки.

Классы систем.

По взаимодействию с внешней средой.

Открытые.

Закрытые Комбинированные.

По структуре.

Простые Сложные Большие.

По характеру функций.

Специализированные Многофункциональные (универсальные).

По характеру развития.

Стабильные Развивающиеся.

По степени организованности.

Хорошо организованные Плохо организованные (диффузные).

По сложности поведения.

Автоматические Решающие Самоорганизующиеся Предвидящие Превращающиеся.

По характеру связи между элементами.

Детерминированные Стохастические.

По характеру структуры управления.

Централизованные Децентрализованные.

По назначению.

Производящие Управляющие Обслуживающие.

Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации.

По содержанию различают реальные (материальные), объективно существующие, и абстрактные (концептуальные, идеальные), являющиеся продуктом мышления.

Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

Естественные системы: системы неживой (физические, химические) и живой (биологические) природы.

Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий.

Искусственные делятся на технические (технико-экономические) и социальные (общественные).

Техническая система спроектирована и изготовлена человеком в определённых целях.

К социальным системам относятся различные системы человеческого общества.

Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать своё состояние. Эти системы выступают как части более крупных, включающие людей — организационно-технических систем.

Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой.

Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека.

Их настроение — необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.

Абстрактные системы разделяют на системы непосредственного отображения (отражающие определённые аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым — концептуальные системы (теории методологического построения) и языки.

На основе понятия внешней среды системы разделяются на: открытые, закрытые (замкнутые, изолированные) и комбинированные. Деление систем на открытые и закрытые связано с их характерными признаками: возможность сохранения свойств при наличии внешних воздействий. Если система нечувствительна к внешним воздействиям её можно считать закрытой. В противном случае — открытой.

Открытой называется система, которая взаимодействует с окружающей средой. Все реальные системы являются открытыми. Открытая система является частью более общей системы или нескольких систем.

Закрытой называется система, которая не взаимодействует со средой или взаимодействует со средой строго определённым образом. В первом случае предполагается, что система не имеет входных полюсов, а во втором, что входные полюса есть, но воздействие среды носит неизменный характер и полностью (заранее) известно. Для закрытой системы, любой её элемент имеет связи только с элементами самой системы.

Комбинированные системы содержат открытые и закрытые подсистемы. Наличие комбинированных систем свидетельствует о сложной комбинации открытой и закрытой подсистем.

В зависимости от структуры и пространственно-временных свойств системы делятся на простые, сложные и большие.

Простые — системы, не имеющие разветвлённых структур, состоящие из небольшого количества взаимосвязей и небольшого количества элементов. Такие элементы служат для выполнения простейших функций, в них нельзя выделить иерархические уровни. Отличительной особенностью простых систем является детерминированность (четкая определенность) номенклатуры, числа элементов и связей как внутри системы, так и со средой.

Сложные — характеризуются большим числом элементов и внутренних связей, их неоднородностью и разнокачественностью, структурным разнообразием, выполняют сложную функцию или ряд функций. Компоненты сложных систем могут рассматриваться как подсистемы, каждая из которых может быть детализирована ещё более простыми подсистемами и т. д. до тех пор, пока не будет получен элемент.

Система называется сложной (с гносеологических позиций), если её познание требует совместного привлечения многих моделей теорий, а в некоторых случаях многих научных дисциплин, а также учёта неопределённости вероятностного и невероятностного характера. Наиболее характерным проявлением этого определения является многомодельность.

Модель — некоторая система, исследование которой служит средством для получения информации о другой системе. Это описание систем (математическое, вербальное и т. д.) отображающее определённую группу её свойств.

Систему называют сложной если в реальной действительности рельефно (существенно) проявляются признаки её сложности. А именно:

  • а) структурная сложность — определяется по числу элементов системы, числу и разнообразию типов связей между ними, количеству иерархических уровней и общему числу подсистем системы. Основными типами считаются следующие виды связей: структурные (в том числе, иерархические), функциональные, каузальные (причинно-следственные), информационные, пространственно-временные;
  • б) сложность функционирования (поведения) — определяется характеристиками множества состояний, правилами перехода из состояния в состояние, воздействие системы на среду и среды на систему, степенью неопределённости перечисленных характеристик и правил;
  • в) сложность выбора поведения — в многоальтернативных ситуациях, когда выбор поведения определяется целью системы, гибкостью реакций на заранее неизвестные воздействия среды;
  • г) сложность развития — определяемая характеристиками эволюционных или скачкообразных процессов.

Сложные системы можно подразделить на следующие факторные подсистемы:

  • 1) решающую, которая принимает глобальные решения во взаимодействии с внешней средой и распределяет локальные задания между всеми другим подсистемами;
  • 2) информационную, которая обеспечивает сбор, переработку и передачу информации, необходимой для принятия глобальных решений и выполнения локальны задач;
  • 3) управляющую для реализации глобальных решений;
  • 4) гомеостазную, поддерживающую динамическое равновесие внутри систем и регулирующую потоки энергии и вещества в подсистемах;
  • 5) адаптивную, накапливающую опыт в процессе обучения для улучшения структуры и функций системы.

Большой системой называют систему, ненаблюдаемую одновременно с позиции одного наблюдателя во времени или в пространстве, для которой существенен пространственный фактор, число подсистем которой очень велико, а состав разнороден.

Основополагающими при анализе и синтезе больших и сложных систем являются процедуры декомпозиции и агрегирования.

Декомпозиция — разделение систем на части, с последующим самостоятельным рассмотрением отдельных частей.

Агрегирование является понятием, противоположным декомпозиции. В процессе исследования возникает необходимость объединения элементов системы с целью рассмотреть её с более общих позиций.

Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого последующего момента времени, называются детерминированными.

Стохастические системы — системы, изменения в которых носят случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

По степени организованности: хорошо организованные, плохо организованные (диффузные).

Плохо организованные системы. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом.

По характеру развития существует два класса систем: стабильные и развивающиеся.

У стабильной системы структура и функции практически не изменяются в течение всего периода её существования и, как правило, качество функционирования стабильных систем по мере изнашивания их элементов только ухудшается. Восстановительные мероприятия обычно могут лишь снизить темп ухудшения.

Отличной особенностью развивающихся систем является то, что с течением времени их структура и функции приобретают существенные изменения. Функции системы более постоянны, хотя часто и они видоизменяются. Практически неизменными остаётся лишь их назначение. Развивающиеся системы имеют более высокую сложность.

В порядке усложнения поведения: автоматические, решающие, самоорганизующиеся, предвидящие, превращающиеся.

Автоматические: однозначно реагируют на ограниченный набор внешних воздействий, внутренняя их организация приспособлена к переходу в равновесное состояние при выводе из него (гомеостаз).

Решающие: имеют постоянные критерии различения их постоянной реакции на широкие классы внешних воздействий. Постоянство внутренней структуры поддерживается заменой вышедших из строя элементов.

Самоорганизующиеся: имеют гибкие критерии различения и гибкие реакции на внешние воздействия, приспосабливающиеся к различным типам воздействия. Устойчивость внутренней структуры высших форм таких систем обеспечивается постоянным самовоспроизводством.

Если устойчивость по своей сложности начинает превосходить сложные воздействия внешнего мира — это предвидящие системы: она может предвидеть дальнейший ход взаимодействия.

Систему можно разделить на виды по признакам структуры их построения и значимости той роли, которую играют в них отдельные составные части в сравнение с ролями других частей.

В некоторых системах одной из частей может принадлежать доминирующая роль (её значимость >> (символ отношения «значительного превосходства») значимость других частей). Такой компонент — будет выступать как центральный, определяющий функционирование всей системы. Такие системы называют централизованными.

В других системах все составляющие их компоненты примерно одинаково значимы. Структурно они расположены не вокруг некоторого централизованного компонента, а взаимосвязаны последовательно или параллельно и имеют примерно одинаковые значения для функционирования системы. Это децентрализованные системы.

Системы можно классифицировать по назначению. Среди технических и организационных систем выделяют: производящие, управляющие, обслуживающие.

В производящих системах реализуются процессы получения некоторых продуктов или услуг. Они в свою очередь делятся на вещественно-энергетические, в которых осуществляется преобразование природной среды или сырья в конечный продукт вещественной или энергетической природы, либо транспортирование такого рода продуктов; и информационные — для сбора, передачи и преобразования информации и предоставление информационных услуг.

Назначение управляющих систем — организация и управление вещественно-энергетическими и информационными процессами.

Обслуживающие системы занимаются поддержкой заданных пределов работоспособности производящих и управляющих систем.

Показать весь текст
Заполнить форму текущей работой