Основные термодинамические параметры состояния
При замере давлений жидкостными приборами вследствие расширения жидкости при нагревании ее объем увеличивается и, следовательно, увеличивается столб жидкости, что приводит к неправильным показаниям приборов. При таких замерах необходимо высоту столба жидкости приводить к 0 °C. Это приведение производится по формуле. Термодинамическая шкала температур, основанная на втором законе термодинамики… Читать ещё >
Основные термодинамические параметры состояния (реферат, курсовая, диплом, контрольная)
Каждое равновесное состояние (см. параграф 1.3) термодинамической системы характеризуется определенными физическими величинами — равновесными параметрами состояния. Внутренние параметры характеризуют внутреннее состояние системы. К ним относятся давление, температура, объем и др. Внешние параметры характеризуют положение системы (координаты) во внешних силовых полях и ее скорость.
Внутренние параметры в свою очередь подразделяются на интенсивные и экстенсивные. Интенсивные — это те параметры, величины которых не зависят от массы тела (давление, температура, удельный объем, удельная теплоемкость). Экстенсивные — это те параметры, величины которых зависят от количества вещества в системе (объем, масса и др.).
В термодинамике существует также деление параметров на термические (давление, температура, объем) и калорические (удельная энергия, удельная теплоемкость, удельные скрытые теплоты фазовых переходов).
Для характеристики конкретных условий, в которых находится данная система, или процесса, происходящего в системе, необходимо прежде всего знать такие внутренние параметры состояния, как удельный объем, абсолютное давление, абсолютная температура.
Удельный объем v (м3/кг) — это объем единицы массы, т. е. величина, определяемая отношением объема к его массе:
где V— объем произвольного количества вещества (м3); т — масса этого вещества (кг).
Величина, обратная удельному объему, называется плотностью р (кг/м3). Плотность — это масса вещества, содержащегося в единице объема:
Давление — величина, определяемая отношением силы (нормальной составляющей силы), действующей на поверхность, к площади этой поверхности (Па = Н/м2):
где F" — нормальная составляющая силы (Н); S — площадь поверхности, нормальной к действующей силе (м2).
Согласно Международной системе единиц (СИ) удельное давление замеряют в ньютонах на один квадратный метр (Н/м2). Эта единица измерения давления называется паскалем (Па). Один мегапаскаль равен 10® Па (1 МПа = 106 Па).
До настоящего времени в технике используется также «старая» единица измерения удельного давления — техническая атмосфера (ат), представляющая собой силу в 1 кгс, действующую на 1 см2 площади.
- 1 ат = 1 кгс/см2 = 104 кгс/м2 = 9,81 • 104 Н/м2 = 0,981 бар;
- 1 бар = 1,1 972 кгс/см2.
Различают давления атмосферное, избыточное и разрежение (вакуум). Атмосферным называется давление атмосферного воздуха на уровне моря. За единицу атмосферного давления принимается давление столба ртути высотой 760 мм (одна физическая атмосфера обозначается «атм»). Таким образом, 1 атм = 760 мм рт. ст.
Давление, которое больше атмосферного, называется избыточным, а которое меньше — разрежением. Для измерения избыточного давления применяют манометры, атмосферного давления — барометры, разрежения — вакуумметры.
Термодинамическим параметром состояния является только абсолютное давление, которое отсчитывается от абсолютного нуля давления, или абсолютного вакуума.
Для измерения давления в технике используют приборы, показывающие не абсолютное (полное) давление, а разность между абсолютным и атмосферным (барометрическим) давлениями. Приборы, применяемые для измерения давлений, больших атмосферного, называются манометрами. Они показывают избыток давления среды над атмосферным (манометрическое давление). Для измерения давлений, меньших атмосферного, используют вакуумметры, которые показывают, насколько абсолютное давление окружающей среды ниже атмосферного. Эту величину, показывающую недостачу давления до атмосферного, называют вакуумом.
Если давление газа в емкости больше атмосферного (рис. 1.1, а), то в точках с и d левого и правого колена трубки давления будут одинаковыми, так как жидкость находится в равновесии, а точки с и Улежат на одном уровне. Условие равновесия сил относительно уровня cd записывается в виде.
где F = plxS — сила давления газа на жидкость в трубке в точке с; Fj = PCyS — сила давления атмосферного воздуха на жидкость в трубке в точке /; F2 = рghS — сила давления столба жидкости высотой h в точке d (вес столба жидкости высотой h).
Подставляя формулы для сил давления в условие равновесия, получаем.
где ра — абсолютное (полное) давление газа в емкости; р^ — атмосферное (барометрическое) давление по барометру; р — плотность жидкости в мано;
Рис. 1.1. Измерение давления газа.
метре; g = 9,8 м/с2 — ускорение свободного падения; рghS — вес столба жидкости высотой А; 5 — площадь сечения трубки манометра.
После сокращения на S получаем
где у = рg — удельный вес манометрической жидкости; уА = ры — манометрическое давление столба жидкости высотой А, выраженное в тех же единицах, в каких даны давления рл и р (у
Из формулы (1.4) следует, что ры = р.А — р (у Таким образом, манометром определяется избыток давления измеряемой среды над атмосферным.
Если давление в емкости меньше атмосферного, то условие равновесия сил, действующих на жидкость в манометре, относительно уровня cd будет иметь вид (рис. 1.1, б)
Отсюда.
где ри = pgA — давление, создаваемое столбом жидкости высотой А.
Это давление определяет вакуум в резервуаре. То есть вакуумом называют недостачу давления ра в емкости до атмосферного.
Избыточное давление и вакуум не являются параметрами состояния, так как они при одном и том же абсолютном давлении могут принимать различные значения в зависимости от величины атмосферного давления.
В технике применяется достаточно большое число единиц измерения давления. Соотношения между ними приведены в табл. 1.1.
Таблица 1.1
Единица измерения. | Бар | Паскаль, Па. (Н/м2). | Физическая атмосфера, атм. | Техническая атмосфера, ат (кгс/см2). | Миллиметры ртутного столба, мм рт. ст. | Миллиметры водного столба, мм вод. ст. |
1 бар | 105 | 0,987. | 1,02. | |||
1 Н/м2 | 10″5 | ; | ; | ; | ; | |
1 атм. | 1,013. | 1,033. | ||||
1 ат. | 0,981. | 0,968. | 735,6. | |||
1 мм рт. ст. | 0,133. | 0,1 316. | 0,136. | 13,6. | ||
1 мм вод. ст. (1 кгс/м2). | 9,81 Ю5 | 9,81. | 9,68−105 | 10~4 | 0,0736. |
При замере давлений жидкостными приборами вследствие расширения жидкости при нагревании ее объем увеличивается и, следовательно, увеличивается столб жидкости, что приводит к неправильным показаниям приборов. При таких замерах необходимо высоту столба жидкости приводить к 0 °C. Это приведение производится по формуле.
где А0 — показания барометра (манометра), приведенные к 0 °C; А — высота столба жидкости, наблюдаемая при ГС; а — объемный коэффициент расширения жидкости (для ртути, а = 0,172).
В настоящее время используются две температурные шкалы.
- 1. Международная практическая температурная шкала Цельсия (°С), в которой за основные реперные точки принимаются точка таяния льда (?0 = 0°С) при нормальном атмосферном давлении (р0 = 760 мм рт. ст.) и точка кипения воды при том же давлении (?к =100°С). Разность показаний термометра в двух этих точках, деленная на 100, представляет собой 1 °C.
- 2. Термодинамическая шкала температур, основанная на втором законе термодинамики. Началом отсчета здесь является температура Т= 0 К = -273,15°С. Измерение температур в каждой из этих двух шкал может производиться как в Кельвинах (К), так и в градусах Цельсия (°С) в зависимости от принятого начала отсчета.
Между температурами, выраженными в Кельвинах и градусах Цельсия, имеется соотношение
В так называемой тройной точке, где жидкая, твердая и газообразная фазы находятся в устойчивом равновесии, температура в Кельвинах равна Т = 273,16 К, а в градусах Цельсия t = 0,01°С.
Параметром состояния является абсолютная температура, выраженная в Кельвинах, по градус абсолютной шкалы численно равен градусу шкалы Цельсия, так что dT = dt.
Абсолютная температура — величина всегда положительная. При температуре абсолютного нуля (Т = 0 К = -273,15 °С) прекращается тепловое движение молекул. Абсолютный нуль температуры недостижим, так как тепловое движение молекул — неотъемлемый атрибут материи, и прекращение этого движения приводит к нарушению закона сохранения материи.
Температура тела (Г, К) — величина, характеризующая степень нагретости тела. Она представляет собой меру средней кинетической энергии поступательного движения молекул. Чем больше средняя скорость движения молекул, тем выше температура тела.
Взаимосвязь между средней кинетической энергией поступательного движения молекул mze2/2 и абсолютной температурой идеального газа Т описывается соотношением.
где m — масса молекулы; w — средняя квадратичная скорость поступательного движения молекул; k = 1,38 • 10~23 Дж/К — постоянная Больцмана.