Одномерные модели вытеснения несмешивающихся жидкостей
Уравнения (6.12), (6.13) с учетом дополнительных соотношений образуют замкнутую систему для случаев линейного течения, являющуюся основой для решения задач вытеснения одной жидкости другой. Характерной особенностью данной системы является то, что её можно свести к одному уравнению для насыщенности. Знание распределения насыщенности в пласте позволяет проанализировать эффективность вытеснения… Читать ещё >
Одномерные модели вытеснения несмешивающихся жидкостей (реферат, курсовая, диплом, контрольная)
Наиболее разработана в настоящее время теория одномерного движения двухфазной жидкости в пористой среде. Основные допущения этой теории состоят в следующем:
жидкости предполагаются несмешивающимися (взаимно нерастворимыми);
жидкости считаются несжимаемыми, а пористая среда — недеформируемой; фазовые переходы отсутствуют; коэффициенты вязкости фаз постоянны;
относительные фазовые проницаемости и капиллярное давление являются известными однозначными функциями насыщенности;
гистерезисные явления не учитываются (рассматриваются только однонаправленные процессы).
Полная система уравнений. Основываясь на этих допущениях, выведем полную систему уравнений двухфазной фильтрации в однородной пористой среде с учетом капиллярных и гравитационных сил.
В случае прямолинейно-параллельного течения вдоль оси х (рис. 6.3) уравнения неразрывности (6.9) для фаз имеют вид.
. (6.12).
Обобщенный закон Дарси (6.10) сводится к уравнениям.
.
. (6.13).
Здесь — угол наклона оси х к горизонту (рис. 6.3); 1 и 2 — плотности фаз.
Рис. 6.4. Схема одномерной двухфазной фильтрации с учетом силы тяжести
Неизвестные характеристики течения, u1, u2, p1 и p2 зависят от координаты х и времени t.
Уравнения (6.12), (6.13) с учетом дополнительных соотношений образуют замкнутую систему для случаев линейного течения, являющуюся основой для решения задач вытеснения одной жидкости другой. Характерной особенностью данной системы является то, что её можно свести к одному уравнению для насыщенности. Знание распределения насыщенности в пласте позволяет проанализировать эффективность вытеснения нефти или газа несмешивающейся с ними жидкостью.
Данное уравнение представляет собой сложное нелинейное уравнение параболического типа второго порядка и точное решение получено лишь для некоторых сравнительно простых частных случаев.
Начальные и граничные условия. При решении конкретных задач для уравнения изменения насыщенности должны быть сформулированы соответствующие граничные и начальные условия. В качестве начального условия задаются значения неизвестной функции в зависимости от пространственных координат при t = 0. Можно считать, что при t = 0 насыщенность всюду постоянна (например, = *).
В случае вытеснения нефти водой естественно задать на входе в пласт (нагнетательная скважина или галерея) расход закачиваемой воды и равенство нулю скорости фильтрации нефти; из последнего условия вытекает (6.13), что k2 = 0, следовательно, на этой поверхности = *.
На выходе из пласта возможно два варианта граничных условий.
1. Можно пренебречь градиентом капиллярного давления по сравнению с градиентом давления в фазах, т. е. считать, что при x = L, откуда следует, что.
при x = L. (6.14).
Экспериментально установлено, что вода не вытекает из гидрофильного пласта, а накапливается в выходном сечении, пока её насыщенность не достигнет значения *. В момент достижения значения * вода прорывается из пласта с сохранением на выходе этого значения насыщенности. Это явление получило название концевого эффекта. Математически оно приводится к сложному нелинейному граничному условию на выходе.
Указанное выше дифференциальное уравнение второго порядка для насыщенности можно упростить путем учета только одного вида сил (гравитационных или капиллярных) и получить, соответственно, две различные модели:
Модель Рапопорта Лиса. Для прямолинейно-параллельного вытеснения уравнение для насыщенности без учета силы тяжести было впервые получено в 1953 г. американскими исследователями Л. Рапопортом и В. Лисом. Поэтому модели двухфазной фильтрации с учетом капиллярных эффектов называют обычно моделями Рапопорта—Лиса.
Дифференциальное уравнение для насыщенности в данной модели — параболического типа.
Модель Баклея Леверетта. Без учета капиллярных сил двухфазная фильтрация для случая прямолинейно-параллельного вытеснения рассматривалась С. Баклеем и М. Левереттом в 1942 г., а позже независимо от них А. М. Пирвердяном, исследовавшим также случай более общего закона фильтрации при двухфазном течении.
Задачи двухфазной фильтрации без учета капиллярных сил известны как задачи (модель) Баклея — Леверетта. Задачи вытеснения такого типа в одномерной постановке изучены достаточно полно.
Уравнение насыщенности задач данного типа принадлежит к классу квазилинейных гиперболических уравнений первого порядка.