Первый закон термодинамики
С6Н12О6 + 602 = 6СО2 + 6Н2О Величина энергии, высвобождаемой из каждого грамма глюкозы в этой реакции, составляет 4,1 килокалории (кКал). Столько же энергии, образуется при окислении глюкозы в живых клетках, несмотря на то, что процесс окисления в них является многоступенчатым процессом и происходит в несколько стадий. Этот вывод основан на принципе Гесса, который является следствием первого… Читать ещё >
Первый закон термодинамики (реферат, курсовая, диплом, контрольная)
Первый закон термодинамики является законом сохранения энергии. Он указывает, что общая энергия в изолированной системе — величина постоянная и не изменяется во времени, а лишь переходит из одной формы другую. Когда в системе происходит некоторый процесс, сумма всей энергии, переданной через границу системы (теплотой или работой), равна общему изменению энергии этой системы. Первый закон термодинамики связывает изменение внутренней энергии системы (dU), теплоту (дQ), переданную системе, и работу, совершённую системой:
дQ = dU + дА (1).
Это уравнение является математическим выражением первого закона термодинамики.
Работа, совершённая системой считается положительной (работа, совершённая над системой — отрицательна).
Смысл первого закона термодинамики можно понять, используя в качестве простого примера газ, закрытый в цилиндре с установленным подвижным поршнем. Если мы добавляем теплоту к газу, но не допускаем перемещения поршня, внутренняя энергия и, следовательно, температура газа возрастёт. Внутренняя энергия газа может быть повышена при его сжатии поршнем. Если при нагревании газа мы позволяем ему расширяться (не удерживаем поршень), теплота, которую мы сообщаем газу, частично расходуется на увеличение его внутренней энергии, а частично — на совершение внешней работы, в результате которой поршень будет подниматься.
Первый закон термодинамики живых организмов
В 19 столетии было доказано экспериментально, что первый закон термодинамики применим к процессам, которые происходят в биологических системах.
Поступление пищи обеспечивает энергию, которая используется для выполнения различных функций организма или сохраняется для последующего использования. Энергия высвобождается из пищевых продуктов в процессе их биологического окисления, которое является многоступенчатым процессом.
Энергия пищевых продуктов используется в клетках первоначально для синтеза макроэргических соединений — например, аденозинтрифосфорной кислоты (АТФ). АТФ, в свою очередь, может использоваться как источник энергии почти для всех процессов в клетке.
Пищевые вещества окисляются вплоть до конечных продуктов, которые выделяются из организма. Например, углеводы окисляются в организме до углекислого газа и воды. Такие же конечные продукты образуются при сжигании углеводов в калориметре:
С6Н12О6 + 602 = 6СО2 + 6Н2О Величина энергии, высвобождаемой из каждого грамма глюкозы в этой реакции, составляет 4,1 килокалории (кКал). Столько же энергии, образуется при окислении глюкозы в живых клетках, несмотря на то, что процесс окисления в них является многоступенчатым процессом и происходит в несколько стадий. Этот вывод основан на принципе Гесса, который является следствием первого закона термодинамики: тепловой эффект многоступенчатого химического процесса не зависит от его промежуточных этапов, а определяется лишь начальным и конечным состояниями системы. Таким образом, исследования с помощью калориметра показали среднюю величину физиологически доступной энергии, которая содержится в 1 грамме трех пищевых продуктов (в килокалориях): углеводы — 4,1; белки — 4,1; жиры — 9,3.
С другой стороны, в конечном итоге вся энергия, поступившая в организм, превращается в теплоту. Также при образовании АТФ лишь часть энергии запасается, большая — рассеивается в форме тепла. При использовании энергии АТФ функциональными системами организма большая часть этой энергии также переходит в тепловую. Оставшаяся часть энергии в клетках идёт на выполнении ими функции, однако, в конечном счёте, превращается в теплоту. Например, энергия, используемая мышечными клетками, расходуется на преодоление вязкости мышцы и других тканей. Вязкое перемещение вызывает трение, что приводит к образованию тепла. Другим примером является расход энергии, передаваемой сокращающимся сердцем крови. При течении крови по сосудам вся энергия превращается в тепло вследствие трения между слоями крови и между кровью и стенками сосудов.
Следовательно, по существу вся энергия, потраченная организмом, в конечном счете, преобразуется в теплоту. Из этого принципа существует лишь единственное исключение: в случае, когда мышцы выполняют работу над внешними телами. Если человек не выполняет внешней работы, то уровень высвобождения организмом энергии можно определить по величине общего количества теплоты, выделенной телом. Для этого применяют метод прямой калориметрии, для реализации которого используют большой, специально оборудованный калориметр. Организм помещают в специальную камеру, которая хорошо изолирована от среды, то есть не происходит обмена энергией с окружающей камеру средой. Количество теплоты, выделенной исследуемым организмом, можно точно измерить. Эксперименты, выполненные этим методом, показали, что количество энергии, поступающей в организм, равно энергии, выделяющейся при проведении калориметрии.
Прямая калориметрия в проведении трудоёмка, поэтому в настоящее время используют метод непрямой калориметрии, который основан на вычислении энергетического выхода организма по использованию им кислорода.