Моделирование AgentSpeak-агентов IMPACT-агентами
В выпускной работе первого из авторов (Тверской госуниверситет) построен алгоритм моделирования AgentSpeak-агентов IMPACT-агентами. Этот алгоритм имеет полиномиальную сложность, и размер результирующего агента линеен по отношению к размеру исходного. Это позволяет перенести некоторые результаты о сложности верификации, установленные в, на AgentSpeak-системы. Отметим, что в работах других авторов… Читать ещё >
Моделирование AgentSpeak-агентов IMPACT-агентами (реферат, курсовая, диплом, контрольная)
В литературе известны и другие архитектуры агентов и МА-систем. У многих из них интеллектуальные компоненты устроены по принципу разделения информации на части, связанные с понятиями «убеждения», «желания» и «намерения» (так называемые BDI-агенты). Такие агенты используются в системе AgentSpeak [Rao, 1996].
Такой агент состоит из программы (набора планов) и 3 функций выбора (статическая часть). Состояние агента на каждом шаге задается множеством событий, набором стеков намерений, набором убеждений (фактов внутренней БД) и набором выполняемых действий.
Работа агента, кратко говоря, выглядит так: возникают и накапливаются некоторые события (факты). Затем из множества событий выбирается одно для последующей обработки. Для этого события подбираются планы, которые можно применить для реакции на него. Затем из множества таких планов выбирается один, и на его основе производится обновление набора стеков намерений. Если событие было внешним, то создается новый стек, если оно внутреннее, то на вершину стека, соответствующего этому событию, помещается тело выбранного плана. Затем функция выбора намерения выбирает один стек для последующей обработки. Обработка состоит в исполнении части тела плана, находящейся на вершине стека. При этом может происходить возникновение нового события, обновление БД убеждений, изменение выбранного стека (в нем может произойти замена переменных на их значения из БД) и выполнение некоторого воздействия на среду.
Проблема верификации для AgentSpeak-систем рассматривалась в литературе. В частности, в [Bordini et al., 2003] было показано, как для этого может быть использована система SPIN [Holtzmann, 1997], изначально предназначенная для верификации параллельных и распределенных императивных программ. В [Валиев и др., 2004] мы рассмотрели возможность использования системы SPIN для верификации некоторых динамических свойств МА-систем рассмотренного выше типа IMPACT, выражаемых в логике линейного времени.
В выпускной работе первого из авторов (Тверской госуниверситет) построен алгоритм моделирования AgentSpeak-агентов IMPACT-агентами. Этот алгоритм имеет полиномиальную сложность, и размер результирующего агента линеен по отношению к размеру исходного. Это позволяет перенести некоторые результаты о сложности верификации, установленные в [Dekhtyar et al., 2003], [Dekhtyar et al., 2006], на AgentSpeak-системы. Отметим, что в работах других авторов по верификации AgentSpeak-систем вопросы сложности не рассматривались.