Интегральные критерии.
Теория информации и когнитивные технологии в моделировании сложных многопараметрических динамических технических систем
Это позволяет использовать аддитивные интегральные критерии и обоснованно ответить на следующий вопрос. Если нам известно, что объект обладает не одним, а несколькими признаками, то как посчитать их общий вклад в сходство с теми или иными классами? Приведенное выражение для интегрального критерия «Семантический резонанс знаний» получается непосредственно из выражения для критерия «Сумма знаний… Читать ещё >
Интегральные критерии. Теория информации и когнитивные технологии в моделировании сложных многопараметрических динамических технических систем (реферат, курсовая, диплом, контрольная)
В результате проведения в метризации шкал, т. е. их преобразования независимо от исходного типа к одному типу: числовому, и независимо от исходных единиц измерения к одним единицам измерения: количеству информации, становится возможным корректно совместно обрабатывать результаты формализации описаний исходных данных в этих шкалах и использовать при этом все арифметические операции, в т. ч. сложение [17].
Это позволяет использовать аддитивные интегральные критерии и обоснованно ответить на следующий вопрос. Если нам известно, что объект обладает не одним, а несколькими признаками, то как посчитать их общий вклад в сходство с теми или иными классами?
Для этого в системе «Эйдос» используется 2 аддитивных интегральных критерия: «Сумма знаний» и «Семантический резонанс знаний».
Интегральный критерий «Семантический резонанс знаний» представляет собой суммарное количество знаний, содержащееся в системе факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, о переходе объекта в будущие целевые или нежелательные состояния.
Интегральный критерий представляет собой аддитивную функцию от частных критериев знаний:
В выражении круглыми скобками обозначено скалярное произведение. В координатной форме это выражение имеет вид:
.
где: M — количество градаций описательных шкал (признаков);
— вектор состояния j-го класса;
— вектор состояния распознаваемого объекта, включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив-локатор), т. е.:
В текущей версии системы «Эйдос-Х++» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признака нет, или n, если он присутствует у объекта с интенсивностью n, т. е. представлен n раз (например, буква «о» в слове «молоко» представлена 3 раза, а буква «м» — один раз).
Интегральный критерий «Семантический резонанс знаний» представляет собой нормированное суммарное количество знаний, содержащееся в системе факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, о переходе объекта в будущие целевые или нежелательные состояния.
Интегральный критерий представляет собой аддитивную функцию от частных критериев знаний имеет вид:
где:
M — количество градаций описательных шкал (признаков);
— средняя информативность по вектору класса;
— среднее по вектору объекта;
— среднеквадратичное отклонение частных критериев знаний вектора класса;
— среднеквадратичное отклонение по вектору распознаваемого объекта. автоматизированный оперативный память матрица.
— вектор состояния j-го класса;
— вектор состояния распознаваемого объекта, включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив-локатор), т. е.:
В текущей версии системы «Эйдос-Х++» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признака нет, или n, если он присутствует у объекта с интенсивностью n, т. е. представлен n раз (например, буква «о» в слове «молоко» представлена 3 раза, а буква «м» — один раз).
Приведенное выражение для интегрального критерия «Семантический резонанс знаний» получается непосредственно из выражения для критерия «Сумма знаний» после замены координат перемножаемых векторов их стандартизированными значениями:
Свое наименование интегральный критерий сходства «Семантический резонанс знаний» получил потому, что по своей математической форме является корреляцией двух векторов: состояния j-го класса и состояния распознаваемого объекта.
Итак, математическая модель АСК-анализа реализована в его программном инструментарии — универсальной когнитивной аналитической системе «Эйдос-Х++» [4]. Как следует из самого названия системы это сделано в универсальной постановке не зависящей от предметной области. Поэтому система «Эйдос-Х++» может быть применена, и фактически и была применена, в самых различных предметных областях для построения интеллектуальных измерительных систем и интеллектуальных систем управления, а также для решения задач идентификации, прогнозирования и приятия решений.